Metamath Proof Explorer


Theorem sralvec

Description: Given a sub division ring F of a division ring E , E may be considered as a vector space over F , which becomes the field of scalars. (Contributed by Thierry Arnoux, 24-May-2023)

Ref Expression
Hypotheses sralvec.a
|- A = ( ( subringAlg ` E ) ` U )
sralvec.f
|- F = ( E |`s U )
Assertion sralvec
|- ( ( E e. DivRing /\ F e. DivRing /\ U e. ( SubRing ` E ) ) -> A e. LVec )

Proof

Step Hyp Ref Expression
1 sralvec.a
 |-  A = ( ( subringAlg ` E ) ` U )
2 sralvec.f
 |-  F = ( E |`s U )
3 eqid
 |-  ( ( subringAlg ` E ) ` U ) = ( ( subringAlg ` E ) ` U )
4 3 sralmod
 |-  ( U e. ( SubRing ` E ) -> ( ( subringAlg ` E ) ` U ) e. LMod )
5 4 3ad2ant3
 |-  ( ( E e. DivRing /\ F e. DivRing /\ U e. ( SubRing ` E ) ) -> ( ( subringAlg ` E ) ` U ) e. LMod )
6 1 5 eqeltrid
 |-  ( ( E e. DivRing /\ F e. DivRing /\ U e. ( SubRing ` E ) ) -> A e. LMod )
7 1 a1i
 |-  ( U e. ( SubRing ` E ) -> A = ( ( subringAlg ` E ) ` U ) )
8 eqid
 |-  ( Base ` E ) = ( Base ` E )
9 8 subrgss
 |-  ( U e. ( SubRing ` E ) -> U C_ ( Base ` E ) )
10 7 9 srasca
 |-  ( U e. ( SubRing ` E ) -> ( E |`s U ) = ( Scalar ` A ) )
11 2 10 syl5eq
 |-  ( U e. ( SubRing ` E ) -> F = ( Scalar ` A ) )
12 11 3ad2ant3
 |-  ( ( E e. DivRing /\ F e. DivRing /\ U e. ( SubRing ` E ) ) -> F = ( Scalar ` A ) )
13 simp2
 |-  ( ( E e. DivRing /\ F e. DivRing /\ U e. ( SubRing ` E ) ) -> F e. DivRing )
14 12 13 eqeltrrd
 |-  ( ( E e. DivRing /\ F e. DivRing /\ U e. ( SubRing ` E ) ) -> ( Scalar ` A ) e. DivRing )
15 eqid
 |-  ( Scalar ` A ) = ( Scalar ` A )
16 15 islvec
 |-  ( A e. LVec <-> ( A e. LMod /\ ( Scalar ` A ) e. DivRing ) )
17 6 14 16 sylanbrc
 |-  ( ( E e. DivRing /\ F e. DivRing /\ U e. ( SubRing ` E ) ) -> A e. LVec )