| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sralvec.a |
|- A = ( ( subringAlg ` E ) ` U ) |
| 2 |
|
sralvec.f |
|- F = ( E |`s U ) |
| 3 |
|
eqid |
|- ( ( subringAlg ` E ) ` U ) = ( ( subringAlg ` E ) ` U ) |
| 4 |
3
|
sralmod |
|- ( U e. ( SubRing ` E ) -> ( ( subringAlg ` E ) ` U ) e. LMod ) |
| 5 |
4
|
3ad2ant3 |
|- ( ( E e. DivRing /\ F e. DivRing /\ U e. ( SubRing ` E ) ) -> ( ( subringAlg ` E ) ` U ) e. LMod ) |
| 6 |
1 5
|
eqeltrid |
|- ( ( E e. DivRing /\ F e. DivRing /\ U e. ( SubRing ` E ) ) -> A e. LMod ) |
| 7 |
1
|
a1i |
|- ( U e. ( SubRing ` E ) -> A = ( ( subringAlg ` E ) ` U ) ) |
| 8 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
| 9 |
8
|
subrgss |
|- ( U e. ( SubRing ` E ) -> U C_ ( Base ` E ) ) |
| 10 |
7 9
|
srasca |
|- ( U e. ( SubRing ` E ) -> ( E |`s U ) = ( Scalar ` A ) ) |
| 11 |
2 10
|
eqtrid |
|- ( U e. ( SubRing ` E ) -> F = ( Scalar ` A ) ) |
| 12 |
11
|
3ad2ant3 |
|- ( ( E e. DivRing /\ F e. DivRing /\ U e. ( SubRing ` E ) ) -> F = ( Scalar ` A ) ) |
| 13 |
|
simp2 |
|- ( ( E e. DivRing /\ F e. DivRing /\ U e. ( SubRing ` E ) ) -> F e. DivRing ) |
| 14 |
12 13
|
eqeltrrd |
|- ( ( E e. DivRing /\ F e. DivRing /\ U e. ( SubRing ` E ) ) -> ( Scalar ` A ) e. DivRing ) |
| 15 |
|
eqid |
|- ( Scalar ` A ) = ( Scalar ` A ) |
| 16 |
15
|
islvec |
|- ( A e. LVec <-> ( A e. LMod /\ ( Scalar ` A ) e. DivRing ) ) |
| 17 |
6 14 16
|
sylanbrc |
|- ( ( E e. DivRing /\ F e. DivRing /\ U e. ( SubRing ` E ) ) -> A e. LVec ) |