| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sralvec.a |
|- A = ( ( subringAlg ` E ) ` U ) |
| 2 |
|
sralvec.f |
|- F = ( E |`s U ) |
| 3 |
|
isfld |
|- ( E e. Field <-> ( E e. DivRing /\ E e. CRing ) ) |
| 4 |
3
|
simplbi |
|- ( E e. Field -> E e. DivRing ) |
| 5 |
|
isfld |
|- ( F e. Field <-> ( F e. DivRing /\ F e. CRing ) ) |
| 6 |
5
|
simplbi |
|- ( F e. Field -> F e. DivRing ) |
| 7 |
|
id |
|- ( U e. ( SubRing ` E ) -> U e. ( SubRing ` E ) ) |
| 8 |
1 2
|
sralvec |
|- ( ( E e. DivRing /\ F e. DivRing /\ U e. ( SubRing ` E ) ) -> A e. LVec ) |
| 9 |
4 6 7 8
|
syl3an |
|- ( ( E e. Field /\ F e. Field /\ U e. ( SubRing ` E ) ) -> A e. LVec ) |