| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sralvec.a |
⊢ 𝐴 = ( ( subringAlg ‘ 𝐸 ) ‘ 𝑈 ) |
| 2 |
|
sralvec.f |
⊢ 𝐹 = ( 𝐸 ↾s 𝑈 ) |
| 3 |
|
isfld |
⊢ ( 𝐸 ∈ Field ↔ ( 𝐸 ∈ DivRing ∧ 𝐸 ∈ CRing ) ) |
| 4 |
3
|
simplbi |
⊢ ( 𝐸 ∈ Field → 𝐸 ∈ DivRing ) |
| 5 |
|
isfld |
⊢ ( 𝐹 ∈ Field ↔ ( 𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing ) ) |
| 6 |
5
|
simplbi |
⊢ ( 𝐹 ∈ Field → 𝐹 ∈ DivRing ) |
| 7 |
|
id |
⊢ ( 𝑈 ∈ ( SubRing ‘ 𝐸 ) → 𝑈 ∈ ( SubRing ‘ 𝐸 ) ) |
| 8 |
1 2
|
sralvec |
⊢ ( ( 𝐸 ∈ DivRing ∧ 𝐹 ∈ DivRing ∧ 𝑈 ∈ ( SubRing ‘ 𝐸 ) ) → 𝐴 ∈ LVec ) |
| 9 |
4 6 7 8
|
syl3an |
⊢ ( ( 𝐸 ∈ Field ∧ 𝐹 ∈ Field ∧ 𝑈 ∈ ( SubRing ‘ 𝐸 ) ) → 𝐴 ∈ LVec ) |