Metamath Proof Explorer


Theorem srafldlvec

Description: Given a subfield F of a field E , E may be considered as a vector space over F , which becomes the field of scalars. (Contributed by Thierry Arnoux, 24-May-2023)

Ref Expression
Hypotheses sralvec.a 𝐴 = ( ( subringAlg ‘ 𝐸 ) ‘ 𝑈 )
sralvec.f 𝐹 = ( 𝐸s 𝑈 )
Assertion srafldlvec ( ( 𝐸 ∈ Field ∧ 𝐹 ∈ Field ∧ 𝑈 ∈ ( SubRing ‘ 𝐸 ) ) → 𝐴 ∈ LVec )

Proof

Step Hyp Ref Expression
1 sralvec.a 𝐴 = ( ( subringAlg ‘ 𝐸 ) ‘ 𝑈 )
2 sralvec.f 𝐹 = ( 𝐸s 𝑈 )
3 isfld ( 𝐸 ∈ Field ↔ ( 𝐸 ∈ DivRing ∧ 𝐸 ∈ CRing ) )
4 3 simplbi ( 𝐸 ∈ Field → 𝐸 ∈ DivRing )
5 isfld ( 𝐹 ∈ Field ↔ ( 𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing ) )
6 5 simplbi ( 𝐹 ∈ Field → 𝐹 ∈ DivRing )
7 id ( 𝑈 ∈ ( SubRing ‘ 𝐸 ) → 𝑈 ∈ ( SubRing ‘ 𝐸 ) )
8 1 2 sralvec ( ( 𝐸 ∈ DivRing ∧ 𝐹 ∈ DivRing ∧ 𝑈 ∈ ( SubRing ‘ 𝐸 ) ) → 𝐴 ∈ LVec )
9 4 6 7 8 syl3an ( ( 𝐸 ∈ Field ∧ 𝐹 ∈ Field ∧ 𝑈 ∈ ( SubRing ‘ 𝐸 ) ) → 𝐴 ∈ LVec )