| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sralvec.a |
⊢ 𝐴 = ( ( subringAlg ‘ 𝐸 ) ‘ 𝑈 ) |
| 2 |
|
sralvec.f |
⊢ 𝐹 = ( 𝐸 ↾s 𝑈 ) |
| 3 |
|
eqid |
⊢ ( ( subringAlg ‘ 𝐸 ) ‘ 𝑈 ) = ( ( subringAlg ‘ 𝐸 ) ‘ 𝑈 ) |
| 4 |
3
|
sralmod |
⊢ ( 𝑈 ∈ ( SubRing ‘ 𝐸 ) → ( ( subringAlg ‘ 𝐸 ) ‘ 𝑈 ) ∈ LMod ) |
| 5 |
4
|
3ad2ant3 |
⊢ ( ( 𝐸 ∈ DivRing ∧ 𝐹 ∈ DivRing ∧ 𝑈 ∈ ( SubRing ‘ 𝐸 ) ) → ( ( subringAlg ‘ 𝐸 ) ‘ 𝑈 ) ∈ LMod ) |
| 6 |
1 5
|
eqeltrid |
⊢ ( ( 𝐸 ∈ DivRing ∧ 𝐹 ∈ DivRing ∧ 𝑈 ∈ ( SubRing ‘ 𝐸 ) ) → 𝐴 ∈ LMod ) |
| 7 |
1
|
a1i |
⊢ ( 𝑈 ∈ ( SubRing ‘ 𝐸 ) → 𝐴 = ( ( subringAlg ‘ 𝐸 ) ‘ 𝑈 ) ) |
| 8 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
| 9 |
8
|
subrgss |
⊢ ( 𝑈 ∈ ( SubRing ‘ 𝐸 ) → 𝑈 ⊆ ( Base ‘ 𝐸 ) ) |
| 10 |
7 9
|
srasca |
⊢ ( 𝑈 ∈ ( SubRing ‘ 𝐸 ) → ( 𝐸 ↾s 𝑈 ) = ( Scalar ‘ 𝐴 ) ) |
| 11 |
2 10
|
eqtrid |
⊢ ( 𝑈 ∈ ( SubRing ‘ 𝐸 ) → 𝐹 = ( Scalar ‘ 𝐴 ) ) |
| 12 |
11
|
3ad2ant3 |
⊢ ( ( 𝐸 ∈ DivRing ∧ 𝐹 ∈ DivRing ∧ 𝑈 ∈ ( SubRing ‘ 𝐸 ) ) → 𝐹 = ( Scalar ‘ 𝐴 ) ) |
| 13 |
|
simp2 |
⊢ ( ( 𝐸 ∈ DivRing ∧ 𝐹 ∈ DivRing ∧ 𝑈 ∈ ( SubRing ‘ 𝐸 ) ) → 𝐹 ∈ DivRing ) |
| 14 |
12 13
|
eqeltrrd |
⊢ ( ( 𝐸 ∈ DivRing ∧ 𝐹 ∈ DivRing ∧ 𝑈 ∈ ( SubRing ‘ 𝐸 ) ) → ( Scalar ‘ 𝐴 ) ∈ DivRing ) |
| 15 |
|
eqid |
⊢ ( Scalar ‘ 𝐴 ) = ( Scalar ‘ 𝐴 ) |
| 16 |
15
|
islvec |
⊢ ( 𝐴 ∈ LVec ↔ ( 𝐴 ∈ LMod ∧ ( Scalar ‘ 𝐴 ) ∈ DivRing ) ) |
| 17 |
6 14 16
|
sylanbrc |
⊢ ( ( 𝐸 ∈ DivRing ∧ 𝐹 ∈ DivRing ∧ 𝑈 ∈ ( SubRing ‘ 𝐸 ) ) → 𝐴 ∈ LVec ) |