Step |
Hyp |
Ref |
Expression |
1 |
|
sralvec.a |
⊢ 𝐴 = ( ( subringAlg ‘ 𝐸 ) ‘ 𝑈 ) |
2 |
|
sralvec.f |
⊢ 𝐹 = ( 𝐸 ↾s 𝑈 ) |
3 |
|
eqid |
⊢ ( ( subringAlg ‘ 𝐸 ) ‘ 𝑈 ) = ( ( subringAlg ‘ 𝐸 ) ‘ 𝑈 ) |
4 |
3
|
sralmod |
⊢ ( 𝑈 ∈ ( SubRing ‘ 𝐸 ) → ( ( subringAlg ‘ 𝐸 ) ‘ 𝑈 ) ∈ LMod ) |
5 |
4
|
3ad2ant3 |
⊢ ( ( 𝐸 ∈ DivRing ∧ 𝐹 ∈ DivRing ∧ 𝑈 ∈ ( SubRing ‘ 𝐸 ) ) → ( ( subringAlg ‘ 𝐸 ) ‘ 𝑈 ) ∈ LMod ) |
6 |
1 5
|
eqeltrid |
⊢ ( ( 𝐸 ∈ DivRing ∧ 𝐹 ∈ DivRing ∧ 𝑈 ∈ ( SubRing ‘ 𝐸 ) ) → 𝐴 ∈ LMod ) |
7 |
1
|
a1i |
⊢ ( 𝑈 ∈ ( SubRing ‘ 𝐸 ) → 𝐴 = ( ( subringAlg ‘ 𝐸 ) ‘ 𝑈 ) ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
9 |
8
|
subrgss |
⊢ ( 𝑈 ∈ ( SubRing ‘ 𝐸 ) → 𝑈 ⊆ ( Base ‘ 𝐸 ) ) |
10 |
7 9
|
srasca |
⊢ ( 𝑈 ∈ ( SubRing ‘ 𝐸 ) → ( 𝐸 ↾s 𝑈 ) = ( Scalar ‘ 𝐴 ) ) |
11 |
2 10
|
syl5eq |
⊢ ( 𝑈 ∈ ( SubRing ‘ 𝐸 ) → 𝐹 = ( Scalar ‘ 𝐴 ) ) |
12 |
11
|
3ad2ant3 |
⊢ ( ( 𝐸 ∈ DivRing ∧ 𝐹 ∈ DivRing ∧ 𝑈 ∈ ( SubRing ‘ 𝐸 ) ) → 𝐹 = ( Scalar ‘ 𝐴 ) ) |
13 |
|
simp2 |
⊢ ( ( 𝐸 ∈ DivRing ∧ 𝐹 ∈ DivRing ∧ 𝑈 ∈ ( SubRing ‘ 𝐸 ) ) → 𝐹 ∈ DivRing ) |
14 |
12 13
|
eqeltrrd |
⊢ ( ( 𝐸 ∈ DivRing ∧ 𝐹 ∈ DivRing ∧ 𝑈 ∈ ( SubRing ‘ 𝐸 ) ) → ( Scalar ‘ 𝐴 ) ∈ DivRing ) |
15 |
|
eqid |
⊢ ( Scalar ‘ 𝐴 ) = ( Scalar ‘ 𝐴 ) |
16 |
15
|
islvec |
⊢ ( 𝐴 ∈ LVec ↔ ( 𝐴 ∈ LMod ∧ ( Scalar ‘ 𝐴 ) ∈ DivRing ) ) |
17 |
6 14 16
|
sylanbrc |
⊢ ( ( 𝐸 ∈ DivRing ∧ 𝐹 ∈ DivRing ∧ 𝑈 ∈ ( SubRing ‘ 𝐸 ) ) → 𝐴 ∈ LVec ) |