Metamath Proof Explorer


Theorem extdgcl

Description: Closure of the field extension degree operation. (Contributed by Thierry Arnoux, 29-Jul-2023)

Ref Expression
Assertion extdgcl E /FldExt F E .:. F 0 *

Proof

Step Hyp Ref Expression
1 extdgval E /FldExt F E .:. F = dim subringAlg E Base F
2 fldextfld1 E /FldExt F E Field
3 isfld E Field E DivRing E CRing
4 2 3 sylib E /FldExt F E DivRing E CRing
5 4 simpld E /FldExt F E DivRing
6 fldextress E /FldExt F F = E 𝑠 Base F
7 fldextfld2 E /FldExt F F Field
8 isfld F Field F DivRing F CRing
9 7 8 sylib E /FldExt F F DivRing F CRing
10 9 simpld E /FldExt F F DivRing
11 6 10 eqeltrrd E /FldExt F E 𝑠 Base F DivRing
12 eqid Base F = Base F
13 12 fldextsubrg E /FldExt F Base F SubRing E
14 eqid subringAlg E Base F = subringAlg E Base F
15 eqid E 𝑠 Base F = E 𝑠 Base F
16 14 15 sralvec E DivRing E 𝑠 Base F DivRing Base F SubRing E subringAlg E Base F LVec
17 5 11 13 16 syl3anc E /FldExt F subringAlg E Base F LVec
18 dimcl subringAlg E Base F LVec dim subringAlg E Base F 0 *
19 17 18 syl E /FldExt F dim subringAlg E Base F 0 *
20 1 19 eqeltrd E /FldExt F E .:. F 0 *