Metamath Proof Explorer


Theorem dimcl

Description: Closure of the vector space dimension. (Contributed by Thierry Arnoux, 18-May-2023)

Ref Expression
Assertion dimcl V LVec dim V 0 *

Proof

Step Hyp Ref Expression
1 eqid LBasis V = LBasis V
2 1 lbsex V LVec LBasis V
3 n0 LBasis V b b LBasis V
4 2 3 sylib V LVec b b LBasis V
5 1 dimval V LVec b LBasis V dim V = b
6 hashxnn0 b LBasis V b 0 *
7 6 adantl V LVec b LBasis V b 0 *
8 5 7 eqeltrd V LVec b LBasis V dim V 0 *
9 4 8 exlimddv V LVec dim V 0 *