| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ( LBasis ` V ) = ( LBasis ` V ) |
| 2 |
1
|
lbsex |
|- ( V e. LVec -> ( LBasis ` V ) =/= (/) ) |
| 3 |
|
n0 |
|- ( ( LBasis ` V ) =/= (/) <-> E. b b e. ( LBasis ` V ) ) |
| 4 |
2 3
|
sylib |
|- ( V e. LVec -> E. b b e. ( LBasis ` V ) ) |
| 5 |
1
|
dimval |
|- ( ( V e. LVec /\ b e. ( LBasis ` V ) ) -> ( dim ` V ) = ( # ` b ) ) |
| 6 |
|
hashxnn0 |
|- ( b e. ( LBasis ` V ) -> ( # ` b ) e. NN0* ) |
| 7 |
6
|
adantl |
|- ( ( V e. LVec /\ b e. ( LBasis ` V ) ) -> ( # ` b ) e. NN0* ) |
| 8 |
5 7
|
eqeltrd |
|- ( ( V e. LVec /\ b e. ( LBasis ` V ) ) -> ( dim ` V ) e. NN0* ) |
| 9 |
4 8
|
exlimddv |
|- ( V e. LVec -> ( dim ` V ) e. NN0* ) |