Step |
Hyp |
Ref |
Expression |
1 |
|
lvecdim0.1 |
|- .0. = ( 0g ` V ) |
2 |
|
eqid |
|- ( LBasis ` V ) = ( LBasis ` V ) |
3 |
2
|
lbsex |
|- ( V e. LVec -> ( LBasis ` V ) =/= (/) ) |
4 |
|
n0 |
|- ( ( LBasis ` V ) =/= (/) <-> E. b b e. ( LBasis ` V ) ) |
5 |
3 4
|
sylib |
|- ( V e. LVec -> E. b b e. ( LBasis ` V ) ) |
6 |
5
|
adantr |
|- ( ( V e. LVec /\ ( dim ` V ) = 0 ) -> E. b b e. ( LBasis ` V ) ) |
7 |
|
simpr |
|- ( ( ( V e. LVec /\ ( dim ` V ) = 0 ) /\ b e. ( LBasis ` V ) ) -> b e. ( LBasis ` V ) ) |
8 |
2
|
dimval |
|- ( ( V e. LVec /\ b e. ( LBasis ` V ) ) -> ( dim ` V ) = ( # ` b ) ) |
9 |
8
|
adantlr |
|- ( ( ( V e. LVec /\ ( dim ` V ) = 0 ) /\ b e. ( LBasis ` V ) ) -> ( dim ` V ) = ( # ` b ) ) |
10 |
|
simplr |
|- ( ( ( V e. LVec /\ ( dim ` V ) = 0 ) /\ b e. ( LBasis ` V ) ) -> ( dim ` V ) = 0 ) |
11 |
9 10
|
eqtr3d |
|- ( ( ( V e. LVec /\ ( dim ` V ) = 0 ) /\ b e. ( LBasis ` V ) ) -> ( # ` b ) = 0 ) |
12 |
|
hasheq0 |
|- ( b e. ( LBasis ` V ) -> ( ( # ` b ) = 0 <-> b = (/) ) ) |
13 |
12
|
biimpa |
|- ( ( b e. ( LBasis ` V ) /\ ( # ` b ) = 0 ) -> b = (/) ) |
14 |
7 11 13
|
syl2anc |
|- ( ( ( V e. LVec /\ ( dim ` V ) = 0 ) /\ b e. ( LBasis ` V ) ) -> b = (/) ) |
15 |
14 7
|
eqeltrrd |
|- ( ( ( V e. LVec /\ ( dim ` V ) = 0 ) /\ b e. ( LBasis ` V ) ) -> (/) e. ( LBasis ` V ) ) |
16 |
6 15
|
exlimddv |
|- ( ( V e. LVec /\ ( dim ` V ) = 0 ) -> (/) e. ( LBasis ` V ) ) |
17 |
|
eqid |
|- ( Base ` V ) = ( Base ` V ) |
18 |
|
eqid |
|- ( LSpan ` V ) = ( LSpan ` V ) |
19 |
17 2 18
|
lbssp |
|- ( (/) e. ( LBasis ` V ) -> ( ( LSpan ` V ) ` (/) ) = ( Base ` V ) ) |
20 |
16 19
|
syl |
|- ( ( V e. LVec /\ ( dim ` V ) = 0 ) -> ( ( LSpan ` V ) ` (/) ) = ( Base ` V ) ) |
21 |
|
lveclmod |
|- ( V e. LVec -> V e. LMod ) |
22 |
21
|
adantr |
|- ( ( V e. LVec /\ ( dim ` V ) = 0 ) -> V e. LMod ) |
23 |
1 18
|
lsp0 |
|- ( V e. LMod -> ( ( LSpan ` V ) ` (/) ) = { .0. } ) |
24 |
22 23
|
syl |
|- ( ( V e. LVec /\ ( dim ` V ) = 0 ) -> ( ( LSpan ` V ) ` (/) ) = { .0. } ) |
25 |
20 24
|
eqtr3d |
|- ( ( V e. LVec /\ ( dim ` V ) = 0 ) -> ( Base ` V ) = { .0. } ) |