Step |
Hyp |
Ref |
Expression |
1 |
|
lvecdim0.1 |
⊢ 0 = ( 0g ‘ 𝑉 ) |
2 |
|
eqid |
⊢ ( LBasis ‘ 𝑉 ) = ( LBasis ‘ 𝑉 ) |
3 |
2
|
lbsex |
⊢ ( 𝑉 ∈ LVec → ( LBasis ‘ 𝑉 ) ≠ ∅ ) |
4 |
|
n0 |
⊢ ( ( LBasis ‘ 𝑉 ) ≠ ∅ ↔ ∃ 𝑏 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) |
5 |
3 4
|
sylib |
⊢ ( 𝑉 ∈ LVec → ∃ 𝑏 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) |
6 |
5
|
adantr |
⊢ ( ( 𝑉 ∈ LVec ∧ ( dim ‘ 𝑉 ) = 0 ) → ∃ 𝑏 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) |
7 |
|
simpr |
⊢ ( ( ( 𝑉 ∈ LVec ∧ ( dim ‘ 𝑉 ) = 0 ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) → 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) |
8 |
2
|
dimval |
⊢ ( ( 𝑉 ∈ LVec ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) → ( dim ‘ 𝑉 ) = ( ♯ ‘ 𝑏 ) ) |
9 |
8
|
adantlr |
⊢ ( ( ( 𝑉 ∈ LVec ∧ ( dim ‘ 𝑉 ) = 0 ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) → ( dim ‘ 𝑉 ) = ( ♯ ‘ 𝑏 ) ) |
10 |
|
simplr |
⊢ ( ( ( 𝑉 ∈ LVec ∧ ( dim ‘ 𝑉 ) = 0 ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) → ( dim ‘ 𝑉 ) = 0 ) |
11 |
9 10
|
eqtr3d |
⊢ ( ( ( 𝑉 ∈ LVec ∧ ( dim ‘ 𝑉 ) = 0 ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) → ( ♯ ‘ 𝑏 ) = 0 ) |
12 |
|
hasheq0 |
⊢ ( 𝑏 ∈ ( LBasis ‘ 𝑉 ) → ( ( ♯ ‘ 𝑏 ) = 0 ↔ 𝑏 = ∅ ) ) |
13 |
12
|
biimpa |
⊢ ( ( 𝑏 ∈ ( LBasis ‘ 𝑉 ) ∧ ( ♯ ‘ 𝑏 ) = 0 ) → 𝑏 = ∅ ) |
14 |
7 11 13
|
syl2anc |
⊢ ( ( ( 𝑉 ∈ LVec ∧ ( dim ‘ 𝑉 ) = 0 ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) → 𝑏 = ∅ ) |
15 |
14 7
|
eqeltrrd |
⊢ ( ( ( 𝑉 ∈ LVec ∧ ( dim ‘ 𝑉 ) = 0 ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) → ∅ ∈ ( LBasis ‘ 𝑉 ) ) |
16 |
6 15
|
exlimddv |
⊢ ( ( 𝑉 ∈ LVec ∧ ( dim ‘ 𝑉 ) = 0 ) → ∅ ∈ ( LBasis ‘ 𝑉 ) ) |
17 |
|
eqid |
⊢ ( Base ‘ 𝑉 ) = ( Base ‘ 𝑉 ) |
18 |
|
eqid |
⊢ ( LSpan ‘ 𝑉 ) = ( LSpan ‘ 𝑉 ) |
19 |
17 2 18
|
lbssp |
⊢ ( ∅ ∈ ( LBasis ‘ 𝑉 ) → ( ( LSpan ‘ 𝑉 ) ‘ ∅ ) = ( Base ‘ 𝑉 ) ) |
20 |
16 19
|
syl |
⊢ ( ( 𝑉 ∈ LVec ∧ ( dim ‘ 𝑉 ) = 0 ) → ( ( LSpan ‘ 𝑉 ) ‘ ∅ ) = ( Base ‘ 𝑉 ) ) |
21 |
|
lveclmod |
⊢ ( 𝑉 ∈ LVec → 𝑉 ∈ LMod ) |
22 |
21
|
adantr |
⊢ ( ( 𝑉 ∈ LVec ∧ ( dim ‘ 𝑉 ) = 0 ) → 𝑉 ∈ LMod ) |
23 |
1 18
|
lsp0 |
⊢ ( 𝑉 ∈ LMod → ( ( LSpan ‘ 𝑉 ) ‘ ∅ ) = { 0 } ) |
24 |
22 23
|
syl |
⊢ ( ( 𝑉 ∈ LVec ∧ ( dim ‘ 𝑉 ) = 0 ) → ( ( LSpan ‘ 𝑉 ) ‘ ∅ ) = { 0 } ) |
25 |
20 24
|
eqtr3d |
⊢ ( ( 𝑉 ∈ LVec ∧ ( dim ‘ 𝑉 ) = 0 ) → ( Base ‘ 𝑉 ) = { 0 } ) |