Description: Every vector space has a basis. This theorem is an AC equivalent. (Contributed by Mario Carneiro, 25-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lbsex.j | ⊢ 𝐽 = ( LBasis ‘ 𝑊 ) | |
| Assertion | lbsex | ⊢ ( 𝑊 ∈ LVec → 𝐽 ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lbsex.j | ⊢ 𝐽 = ( LBasis ‘ 𝑊 ) | |
| 2 | axac3 | ⊢ CHOICE | |
| 3 | 1 | lbsexg | ⊢ ( ( CHOICE ∧ 𝑊 ∈ LVec ) → 𝐽 ≠ ∅ ) |
| 4 | 2 3 | mpan | ⊢ ( 𝑊 ∈ LVec → 𝐽 ≠ ∅ ) |