Description: Every vector space has a basis. This theorem is an AC equivalent. (Contributed by Mario Carneiro, 25-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lbsex.j | |- J = ( LBasis ` W ) |
|
| Assertion | lbsex | |- ( W e. LVec -> J =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lbsex.j | |- J = ( LBasis ` W ) |
|
| 2 | axac3 | |- CHOICE |
|
| 3 | 1 | lbsexg | |- ( ( CHOICE /\ W e. LVec ) -> J =/= (/) ) |
| 4 | 2 3 | mpan | |- ( W e. LVec -> J =/= (/) ) |