| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lbsex.j |
|- J = ( LBasis ` W ) |
| 2 |
|
id |
|- ( W e. LVec -> W e. LVec ) |
| 3 |
|
fvex |
|- ( Base ` W ) e. _V |
| 4 |
3
|
pwex |
|- ~P ( Base ` W ) e. _V |
| 5 |
|
dfac10 |
|- ( CHOICE <-> dom card = _V ) |
| 6 |
5
|
biimpi |
|- ( CHOICE -> dom card = _V ) |
| 7 |
4 6
|
eleqtrrid |
|- ( CHOICE -> ~P ( Base ` W ) e. dom card ) |
| 8 |
|
0ss |
|- (/) C_ ( Base ` W ) |
| 9 |
|
ral0 |
|- A. x e. (/) -. x e. ( ( LSpan ` W ) ` ( (/) \ { x } ) ) |
| 10 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 11 |
|
eqid |
|- ( LSpan ` W ) = ( LSpan ` W ) |
| 12 |
1 10 11
|
lbsextg |
|- ( ( ( W e. LVec /\ ~P ( Base ` W ) e. dom card ) /\ (/) C_ ( Base ` W ) /\ A. x e. (/) -. x e. ( ( LSpan ` W ) ` ( (/) \ { x } ) ) ) -> E. s e. J (/) C_ s ) |
| 13 |
8 9 12
|
mp3an23 |
|- ( ( W e. LVec /\ ~P ( Base ` W ) e. dom card ) -> E. s e. J (/) C_ s ) |
| 14 |
2 7 13
|
syl2anr |
|- ( ( CHOICE /\ W e. LVec ) -> E. s e. J (/) C_ s ) |
| 15 |
|
rexn0 |
|- ( E. s e. J (/) C_ s -> J =/= (/) ) |
| 16 |
14 15
|
syl |
|- ( ( CHOICE /\ W e. LVec ) -> J =/= (/) ) |