Step |
Hyp |
Ref |
Expression |
1 |
|
lvecdim0.1 |
⊢ 0 = ( 0g ‘ 𝑉 ) |
2 |
1
|
lvecdim0i |
⊢ ( ( 𝑉 ∈ LVec ∧ ( dim ‘ 𝑉 ) = 0 ) → ( Base ‘ 𝑉 ) = { 0 } ) |
3 |
|
simpl |
⊢ ( ( 𝑉 ∈ LVec ∧ ( Base ‘ 𝑉 ) = { 0 } ) → 𝑉 ∈ LVec ) |
4 |
|
eqid |
⊢ ( LBasis ‘ 𝑉 ) = ( LBasis ‘ 𝑉 ) |
5 |
4
|
lbsex |
⊢ ( 𝑉 ∈ LVec → ( LBasis ‘ 𝑉 ) ≠ ∅ ) |
6 |
|
n0 |
⊢ ( ( LBasis ‘ 𝑉 ) ≠ ∅ ↔ ∃ 𝑏 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) |
7 |
5 6
|
sylib |
⊢ ( 𝑉 ∈ LVec → ∃ 𝑏 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) |
8 |
3 7
|
syl |
⊢ ( ( 𝑉 ∈ LVec ∧ ( Base ‘ 𝑉 ) = { 0 } ) → ∃ 𝑏 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) |
9 |
1
|
fvexi |
⊢ 0 ∈ V |
10 |
9
|
snid |
⊢ 0 ∈ { 0 } |
11 |
|
simpr |
⊢ ( ( ( ( 𝑉 ∈ LVec ∧ ( Base ‘ 𝑉 ) = { 0 } ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑏 = { 0 } ) → 𝑏 = { 0 } ) |
12 |
10 11
|
eleqtrrid |
⊢ ( ( ( ( 𝑉 ∈ LVec ∧ ( Base ‘ 𝑉 ) = { 0 } ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑏 = { 0 } ) → 0 ∈ 𝑏 ) |
13 |
|
simplll |
⊢ ( ( ( ( 𝑉 ∈ LVec ∧ ( Base ‘ 𝑉 ) = { 0 } ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑏 = { 0 } ) → 𝑉 ∈ LVec ) |
14 |
4
|
lbslinds |
⊢ ( LBasis ‘ 𝑉 ) ⊆ ( LIndS ‘ 𝑉 ) |
15 |
|
simplr |
⊢ ( ( ( ( 𝑉 ∈ LVec ∧ ( Base ‘ 𝑉 ) = { 0 } ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑏 = { 0 } ) → 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) |
16 |
14 15
|
sselid |
⊢ ( ( ( ( 𝑉 ∈ LVec ∧ ( Base ‘ 𝑉 ) = { 0 } ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑏 = { 0 } ) → 𝑏 ∈ ( LIndS ‘ 𝑉 ) ) |
17 |
1
|
0nellinds |
⊢ ( ( 𝑉 ∈ LVec ∧ 𝑏 ∈ ( LIndS ‘ 𝑉 ) ) → ¬ 0 ∈ 𝑏 ) |
18 |
13 16 17
|
syl2anc |
⊢ ( ( ( ( 𝑉 ∈ LVec ∧ ( Base ‘ 𝑉 ) = { 0 } ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑏 = { 0 } ) → ¬ 0 ∈ 𝑏 ) |
19 |
12 18
|
pm2.65da |
⊢ ( ( ( 𝑉 ∈ LVec ∧ ( Base ‘ 𝑉 ) = { 0 } ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) → ¬ 𝑏 = { 0 } ) |
20 |
|
simpr |
⊢ ( ( ( 𝑉 ∈ LVec ∧ ( Base ‘ 𝑉 ) = { 0 } ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) → 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) |
21 |
|
eqid |
⊢ ( Base ‘ 𝑉 ) = ( Base ‘ 𝑉 ) |
22 |
21 4
|
lbsss |
⊢ ( 𝑏 ∈ ( LBasis ‘ 𝑉 ) → 𝑏 ⊆ ( Base ‘ 𝑉 ) ) |
23 |
20 22
|
syl |
⊢ ( ( ( 𝑉 ∈ LVec ∧ ( Base ‘ 𝑉 ) = { 0 } ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) → 𝑏 ⊆ ( Base ‘ 𝑉 ) ) |
24 |
|
simplr |
⊢ ( ( ( 𝑉 ∈ LVec ∧ ( Base ‘ 𝑉 ) = { 0 } ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) → ( Base ‘ 𝑉 ) = { 0 } ) |
25 |
23 24
|
sseqtrd |
⊢ ( ( ( 𝑉 ∈ LVec ∧ ( Base ‘ 𝑉 ) = { 0 } ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) → 𝑏 ⊆ { 0 } ) |
26 |
|
sssn |
⊢ ( 𝑏 ⊆ { 0 } ↔ ( 𝑏 = ∅ ∨ 𝑏 = { 0 } ) ) |
27 |
25 26
|
sylib |
⊢ ( ( ( 𝑉 ∈ LVec ∧ ( Base ‘ 𝑉 ) = { 0 } ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) → ( 𝑏 = ∅ ∨ 𝑏 = { 0 } ) ) |
28 |
27
|
orcomd |
⊢ ( ( ( 𝑉 ∈ LVec ∧ ( Base ‘ 𝑉 ) = { 0 } ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) → ( 𝑏 = { 0 } ∨ 𝑏 = ∅ ) ) |
29 |
28
|
ord |
⊢ ( ( ( 𝑉 ∈ LVec ∧ ( Base ‘ 𝑉 ) = { 0 } ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) → ( ¬ 𝑏 = { 0 } → 𝑏 = ∅ ) ) |
30 |
19 29
|
mpd |
⊢ ( ( ( 𝑉 ∈ LVec ∧ ( Base ‘ 𝑉 ) = { 0 } ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) → 𝑏 = ∅ ) |
31 |
30 20
|
eqeltrrd |
⊢ ( ( ( 𝑉 ∈ LVec ∧ ( Base ‘ 𝑉 ) = { 0 } ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) → ∅ ∈ ( LBasis ‘ 𝑉 ) ) |
32 |
8 31
|
exlimddv |
⊢ ( ( 𝑉 ∈ LVec ∧ ( Base ‘ 𝑉 ) = { 0 } ) → ∅ ∈ ( LBasis ‘ 𝑉 ) ) |
33 |
4
|
dimval |
⊢ ( ( 𝑉 ∈ LVec ∧ ∅ ∈ ( LBasis ‘ 𝑉 ) ) → ( dim ‘ 𝑉 ) = ( ♯ ‘ ∅ ) ) |
34 |
3 32 33
|
syl2anc |
⊢ ( ( 𝑉 ∈ LVec ∧ ( Base ‘ 𝑉 ) = { 0 } ) → ( dim ‘ 𝑉 ) = ( ♯ ‘ ∅ ) ) |
35 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
36 |
34 35
|
eqtrdi |
⊢ ( ( 𝑉 ∈ LVec ∧ ( Base ‘ 𝑉 ) = { 0 } ) → ( dim ‘ 𝑉 ) = 0 ) |
37 |
2 36
|
impbida |
⊢ ( 𝑉 ∈ LVec → ( ( dim ‘ 𝑉 ) = 0 ↔ ( Base ‘ 𝑉 ) = { 0 } ) ) |