| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lvecdim0.1 |
|
| 2 |
1
|
lvecdim0i |
|
| 3 |
|
simpl |
|
| 4 |
|
eqid |
|
| 5 |
4
|
lbsex |
|
| 6 |
|
n0 |
|
| 7 |
5 6
|
sylib |
|
| 8 |
3 7
|
syl |
|
| 9 |
1
|
fvexi |
|
| 10 |
9
|
snid |
|
| 11 |
|
simpr |
|
| 12 |
10 11
|
eleqtrrid |
|
| 13 |
|
simplll |
|
| 14 |
4
|
lbslinds |
|
| 15 |
|
simplr |
|
| 16 |
14 15
|
sselid |
|
| 17 |
1
|
0nellinds |
|
| 18 |
13 16 17
|
syl2anc |
|
| 19 |
12 18
|
pm2.65da |
|
| 20 |
|
simpr |
|
| 21 |
|
eqid |
|
| 22 |
21 4
|
lbsss |
|
| 23 |
20 22
|
syl |
|
| 24 |
|
simplr |
|
| 25 |
23 24
|
sseqtrd |
|
| 26 |
|
sssn |
|
| 27 |
25 26
|
sylib |
|
| 28 |
27
|
orcomd |
|
| 29 |
28
|
ord |
|
| 30 |
19 29
|
mpd |
|
| 31 |
30 20
|
eqeltrrd |
|
| 32 |
8 31
|
exlimddv |
|
| 33 |
4
|
dimval |
|
| 34 |
3 32 33
|
syl2anc |
|
| 35 |
|
hash0 |
|
| 36 |
34 35
|
eqtrdi |
|
| 37 |
2 36
|
impbida |
|