Step |
Hyp |
Ref |
Expression |
1 |
|
0nellinds.1 |
|
2 |
|
oveq2 |
|
3 |
|
sneq |
|
4 |
3
|
difeq2d |
|
5 |
4
|
fveq2d |
|
6 |
2 5
|
eleq12d |
|
7 |
6
|
notbid |
|
8 |
7
|
ralbidv |
|
9 |
|
eqid |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
|
eqid |
|
14 |
|
eqid |
|
15 |
9 10 11 12 13 14
|
islinds2 |
|
16 |
15
|
simplbda |
|
17 |
16
|
adantr |
|
18 |
|
simpr |
|
19 |
8 17 18
|
rspcdva |
|
20 |
|
lveclmod |
|
21 |
|
eqid |
|
22 |
12 13 21
|
lmod1cl |
|
23 |
20 22
|
syl |
|
24 |
23
|
adantr |
|
25 |
12
|
lvecdrng |
|
26 |
14 21
|
drngunz |
|
27 |
25 26
|
syl |
|
28 |
27
|
adantr |
|
29 |
|
eldifsn |
|
30 |
24 28 29
|
sylanbrc |
|
31 |
30
|
adantr |
|
32 |
20
|
ad2antrr |
|
33 |
12 10 13 1
|
lmodvs0 |
|
34 |
32 22 33
|
syl2anc2 |
|
35 |
9
|
linds1 |
|
36 |
35
|
ad2antlr |
|
37 |
36
|
ssdifssd |
|
38 |
1 9 11
|
0ellsp |
|
39 |
32 37 38
|
syl2anc |
|
40 |
34 39
|
eqeltrd |
|
41 |
|
oveq1 |
|
42 |
41
|
eleq1d |
|
43 |
42
|
rspcev |
|
44 |
31 40 43
|
syl2anc |
|
45 |
|
dfrex2 |
|
46 |
44 45
|
sylib |
|
47 |
19 46
|
pm2.65da |
|