Metamath Proof Explorer


Theorem 0ellsp

Description: Zero is in all spans. (Contributed by Thierry Arnoux, 8-May-2023)

Ref Expression
Hypotheses 0ellsp.1 0˙=0W
0ellsp.b B=BaseW
0ellsp.n N=LSpanW
Assertion 0ellsp WLModSB0˙NS

Proof

Step Hyp Ref Expression
1 0ellsp.1 0˙=0W
2 0ellsp.b B=BaseW
3 0ellsp.n N=LSpanW
4 eqid LSubSpW=LSubSpW
5 2 4 3 lspcl WLModSBNSLSubSpW
6 1 4 lss0cl WLModNSLSubSpW0˙NS
7 5 6 syldan WLModSB0˙NS