Metamath Proof Explorer


Theorem 0ellsp

Description: Zero is in all spans. (Contributed by Thierry Arnoux, 8-May-2023)

Ref Expression
Hypotheses 0ellsp.1 0 ˙ = 0 W
0ellsp.b B = Base W
0ellsp.n N = LSpan W
Assertion 0ellsp W LMod S B 0 ˙ N S

Proof

Step Hyp Ref Expression
1 0ellsp.1 0 ˙ = 0 W
2 0ellsp.b B = Base W
3 0ellsp.n N = LSpan W
4 eqid LSubSp W = LSubSp W
5 2 4 3 lspcl W LMod S B N S LSubSp W
6 1 4 lss0cl W LMod N S LSubSp W 0 ˙ N S
7 5 6 syldan W LMod S B 0 ˙ N S