Description: Zero is in all spans. (Contributed by Thierry Arnoux, 8-May-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 0ellsp.1 | |- .0. = ( 0g ` W ) |
|
0ellsp.b | |- B = ( Base ` W ) |
||
0ellsp.n | |- N = ( LSpan ` W ) |
||
Assertion | 0ellsp | |- ( ( W e. LMod /\ S C_ B ) -> .0. e. ( N ` S ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ellsp.1 | |- .0. = ( 0g ` W ) |
|
2 | 0ellsp.b | |- B = ( Base ` W ) |
|
3 | 0ellsp.n | |- N = ( LSpan ` W ) |
|
4 | eqid | |- ( LSubSp ` W ) = ( LSubSp ` W ) |
|
5 | 2 4 3 | lspcl | |- ( ( W e. LMod /\ S C_ B ) -> ( N ` S ) e. ( LSubSp ` W ) ) |
6 | 1 4 | lss0cl | |- ( ( W e. LMod /\ ( N ` S ) e. ( LSubSp ` W ) ) -> .0. e. ( N ` S ) ) |
7 | 5 6 | syldan | |- ( ( W e. LMod /\ S C_ B ) -> .0. e. ( N ` S ) ) |