Metamath Proof Explorer


Theorem 0ellsp

Description: Zero is in all spans. (Contributed by Thierry Arnoux, 8-May-2023)

Ref Expression
Hypotheses 0ellsp.1
|- .0. = ( 0g ` W )
0ellsp.b
|- B = ( Base ` W )
0ellsp.n
|- N = ( LSpan ` W )
Assertion 0ellsp
|- ( ( W e. LMod /\ S C_ B ) -> .0. e. ( N ` S ) )

Proof

Step Hyp Ref Expression
1 0ellsp.1
 |-  .0. = ( 0g ` W )
2 0ellsp.b
 |-  B = ( Base ` W )
3 0ellsp.n
 |-  N = ( LSpan ` W )
4 eqid
 |-  ( LSubSp ` W ) = ( LSubSp ` W )
5 2 4 3 lspcl
 |-  ( ( W e. LMod /\ S C_ B ) -> ( N ` S ) e. ( LSubSp ` W ) )
6 1 4 lss0cl
 |-  ( ( W e. LMod /\ ( N ` S ) e. ( LSubSp ` W ) ) -> .0. e. ( N ` S ) )
7 5 6 syldan
 |-  ( ( W e. LMod /\ S C_ B ) -> .0. e. ( N ` S ) )