Description: Zero is in all spans. (Contributed by Thierry Arnoux, 8-May-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 0ellsp.1 | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
0ellsp.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | ||
0ellsp.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
Assertion | 0ellsp | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑆 ⊆ 𝐵 ) → 0 ∈ ( 𝑁 ‘ 𝑆 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ellsp.1 | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
2 | 0ellsp.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
3 | 0ellsp.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
4 | eqid | ⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) | |
5 | 2 4 3 | lspcl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑁 ‘ 𝑆 ) ∈ ( LSubSp ‘ 𝑊 ) ) |
6 | 1 4 | lss0cl | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ 𝑆 ) ∈ ( LSubSp ‘ 𝑊 ) ) → 0 ∈ ( 𝑁 ‘ 𝑆 ) ) |
7 | 5 6 | syldan | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑆 ⊆ 𝐵 ) → 0 ∈ ( 𝑁 ‘ 𝑆 ) ) |