Metamath Proof Explorer


Theorem 0ellsp

Description: Zero is in all spans. (Contributed by Thierry Arnoux, 8-May-2023)

Ref Expression
Hypotheses 0ellsp.1 0 = ( 0g𝑊 )
0ellsp.b 𝐵 = ( Base ‘ 𝑊 )
0ellsp.n 𝑁 = ( LSpan ‘ 𝑊 )
Assertion 0ellsp ( ( 𝑊 ∈ LMod ∧ 𝑆𝐵 ) → 0 ∈ ( 𝑁𝑆 ) )

Proof

Step Hyp Ref Expression
1 0ellsp.1 0 = ( 0g𝑊 )
2 0ellsp.b 𝐵 = ( Base ‘ 𝑊 )
3 0ellsp.n 𝑁 = ( LSpan ‘ 𝑊 )
4 eqid ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 )
5 2 4 3 lspcl ( ( 𝑊 ∈ LMod ∧ 𝑆𝐵 ) → ( 𝑁𝑆 ) ∈ ( LSubSp ‘ 𝑊 ) )
6 1 4 lss0cl ( ( 𝑊 ∈ LMod ∧ ( 𝑁𝑆 ) ∈ ( LSubSp ‘ 𝑊 ) ) → 0 ∈ ( 𝑁𝑆 ) )
7 5 6 syldan ( ( 𝑊 ∈ LMod ∧ 𝑆𝐵 ) → 0 ∈ ( 𝑁𝑆 ) )