Step |
Hyp |
Ref |
Expression |
1 |
|
0nellinds.1 |
⊢ 0 = ( 0g ‘ 𝑊 ) |
2 |
|
oveq2 |
⊢ ( 𝑥 = 0 → ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 0 ) ) |
3 |
|
sneq |
⊢ ( 𝑥 = 0 → { 𝑥 } = { 0 } ) |
4 |
3
|
difeq2d |
⊢ ( 𝑥 = 0 → ( 𝐹 ∖ { 𝑥 } ) = ( 𝐹 ∖ { 0 } ) ) |
5 |
4
|
fveq2d |
⊢ ( 𝑥 = 0 → ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 ∖ { 𝑥 } ) ) = ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 ∖ { 0 } ) ) ) |
6 |
2 5
|
eleq12d |
⊢ ( 𝑥 = 0 → ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 ∖ { 𝑥 } ) ) ↔ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 0 ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 ∖ { 0 } ) ) ) ) |
7 |
6
|
notbid |
⊢ ( 𝑥 = 0 → ( ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 ∖ { 𝑥 } ) ) ↔ ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 0 ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 ∖ { 0 } ) ) ) ) |
8 |
7
|
ralbidv |
⊢ ( 𝑥 = 0 → ( ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 ∖ { 𝑥 } ) ) ↔ ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 0 ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 ∖ { 0 } ) ) ) ) |
9 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
10 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
11 |
|
eqid |
⊢ ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 ) |
12 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
13 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
14 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) |
15 |
9 10 11 12 13 14
|
islinds2 |
⊢ ( 𝑊 ∈ LVec → ( 𝐹 ∈ ( LIndS ‘ 𝑊 ) ↔ ( 𝐹 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 ∖ { 𝑥 } ) ) ) ) ) |
16 |
15
|
simplbda |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝐹 ∈ ( LIndS ‘ 𝑊 ) ) → ∀ 𝑥 ∈ 𝐹 ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 ∖ { 𝑥 } ) ) ) |
17 |
16
|
adantr |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝐹 ∈ ( LIndS ‘ 𝑊 ) ) ∧ 0 ∈ 𝐹 ) → ∀ 𝑥 ∈ 𝐹 ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 ∖ { 𝑥 } ) ) ) |
18 |
|
simpr |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝐹 ∈ ( LIndS ‘ 𝑊 ) ) ∧ 0 ∈ 𝐹 ) → 0 ∈ 𝐹 ) |
19 |
8 17 18
|
rspcdva |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝐹 ∈ ( LIndS ‘ 𝑊 ) ) ∧ 0 ∈ 𝐹 ) → ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 0 ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 ∖ { 0 } ) ) ) |
20 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
21 |
|
eqid |
⊢ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) |
22 |
12 13 21
|
lmod1cl |
⊢ ( 𝑊 ∈ LMod → ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
23 |
20 22
|
syl |
⊢ ( 𝑊 ∈ LVec → ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
24 |
23
|
adantr |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝐹 ∈ ( LIndS ‘ 𝑊 ) ) → ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
25 |
12
|
lvecdrng |
⊢ ( 𝑊 ∈ LVec → ( Scalar ‘ 𝑊 ) ∈ DivRing ) |
26 |
14 21
|
drngunz |
⊢ ( ( Scalar ‘ 𝑊 ) ∈ DivRing → ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
27 |
25 26
|
syl |
⊢ ( 𝑊 ∈ LVec → ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
28 |
27
|
adantr |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝐹 ∈ ( LIndS ‘ 𝑊 ) ) → ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
29 |
|
eldifsn |
⊢ ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ↔ ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
30 |
24 28 29
|
sylanbrc |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝐹 ∈ ( LIndS ‘ 𝑊 ) ) → ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) |
31 |
30
|
adantr |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝐹 ∈ ( LIndS ‘ 𝑊 ) ) ∧ 0 ∈ 𝐹 ) → ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) |
32 |
20
|
ad2antrr |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝐹 ∈ ( LIndS ‘ 𝑊 ) ) ∧ 0 ∈ 𝐹 ) → 𝑊 ∈ LMod ) |
33 |
12 10 13 1
|
lmodvs0 |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 0 ) = 0 ) |
34 |
32 22 33
|
syl2anc2 |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝐹 ∈ ( LIndS ‘ 𝑊 ) ) ∧ 0 ∈ 𝐹 ) → ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 0 ) = 0 ) |
35 |
9
|
linds1 |
⊢ ( 𝐹 ∈ ( LIndS ‘ 𝑊 ) → 𝐹 ⊆ ( Base ‘ 𝑊 ) ) |
36 |
35
|
ad2antlr |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝐹 ∈ ( LIndS ‘ 𝑊 ) ) ∧ 0 ∈ 𝐹 ) → 𝐹 ⊆ ( Base ‘ 𝑊 ) ) |
37 |
36
|
ssdifssd |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝐹 ∈ ( LIndS ‘ 𝑊 ) ) ∧ 0 ∈ 𝐹 ) → ( 𝐹 ∖ { 0 } ) ⊆ ( Base ‘ 𝑊 ) ) |
38 |
1 9 11
|
0ellsp |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐹 ∖ { 0 } ) ⊆ ( Base ‘ 𝑊 ) ) → 0 ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 ∖ { 0 } ) ) ) |
39 |
32 37 38
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝐹 ∈ ( LIndS ‘ 𝑊 ) ) ∧ 0 ∈ 𝐹 ) → 0 ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 ∖ { 0 } ) ) ) |
40 |
34 39
|
eqeltrd |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝐹 ∈ ( LIndS ‘ 𝑊 ) ) ∧ 0 ∈ 𝐹 ) → ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 0 ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 ∖ { 0 } ) ) ) |
41 |
|
oveq1 |
⊢ ( 𝑘 = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) → ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 0 ) = ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 0 ) ) |
42 |
41
|
eleq1d |
⊢ ( 𝑘 = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) → ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 0 ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 ∖ { 0 } ) ) ↔ ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 0 ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 ∖ { 0 } ) ) ) ) |
43 |
42
|
rspcev |
⊢ ( ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 0 ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 ∖ { 0 } ) ) ) → ∃ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 0 ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 ∖ { 0 } ) ) ) |
44 |
31 40 43
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝐹 ∈ ( LIndS ‘ 𝑊 ) ) ∧ 0 ∈ 𝐹 ) → ∃ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 0 ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 ∖ { 0 } ) ) ) |
45 |
|
dfrex2 |
⊢ ( ∃ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 0 ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 ∖ { 0 } ) ) ↔ ¬ ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 0 ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 ∖ { 0 } ) ) ) |
46 |
44 45
|
sylib |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝐹 ∈ ( LIndS ‘ 𝑊 ) ) ∧ 0 ∈ 𝐹 ) → ¬ ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 0 ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 ∖ { 0 } ) ) ) |
47 |
19 46
|
pm2.65da |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝐹 ∈ ( LIndS ‘ 𝑊 ) ) → ¬ 0 ∈ 𝐹 ) |