| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0nellinds.1 |
|- .0. = ( 0g ` W ) |
| 2 |
|
oveq2 |
|- ( x = .0. -> ( k ( .s ` W ) x ) = ( k ( .s ` W ) .0. ) ) |
| 3 |
|
sneq |
|- ( x = .0. -> { x } = { .0. } ) |
| 4 |
3
|
difeq2d |
|- ( x = .0. -> ( F \ { x } ) = ( F \ { .0. } ) ) |
| 5 |
4
|
fveq2d |
|- ( x = .0. -> ( ( LSpan ` W ) ` ( F \ { x } ) ) = ( ( LSpan ` W ) ` ( F \ { .0. } ) ) ) |
| 6 |
2 5
|
eleq12d |
|- ( x = .0. -> ( ( k ( .s ` W ) x ) e. ( ( LSpan ` W ) ` ( F \ { x } ) ) <-> ( k ( .s ` W ) .0. ) e. ( ( LSpan ` W ) ` ( F \ { .0. } ) ) ) ) |
| 7 |
6
|
notbid |
|- ( x = .0. -> ( -. ( k ( .s ` W ) x ) e. ( ( LSpan ` W ) ` ( F \ { x } ) ) <-> -. ( k ( .s ` W ) .0. ) e. ( ( LSpan ` W ) ` ( F \ { .0. } ) ) ) ) |
| 8 |
7
|
ralbidv |
|- ( x = .0. -> ( A. k e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) -. ( k ( .s ` W ) x ) e. ( ( LSpan ` W ) ` ( F \ { x } ) ) <-> A. k e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) -. ( k ( .s ` W ) .0. ) e. ( ( LSpan ` W ) ` ( F \ { .0. } ) ) ) ) |
| 9 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 10 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
| 11 |
|
eqid |
|- ( LSpan ` W ) = ( LSpan ` W ) |
| 12 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
| 13 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
| 14 |
|
eqid |
|- ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) |
| 15 |
9 10 11 12 13 14
|
islinds2 |
|- ( W e. LVec -> ( F e. ( LIndS ` W ) <-> ( F C_ ( Base ` W ) /\ A. x e. F A. k e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) -. ( k ( .s ` W ) x ) e. ( ( LSpan ` W ) ` ( F \ { x } ) ) ) ) ) |
| 16 |
15
|
simplbda |
|- ( ( W e. LVec /\ F e. ( LIndS ` W ) ) -> A. x e. F A. k e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) -. ( k ( .s ` W ) x ) e. ( ( LSpan ` W ) ` ( F \ { x } ) ) ) |
| 17 |
16
|
adantr |
|- ( ( ( W e. LVec /\ F e. ( LIndS ` W ) ) /\ .0. e. F ) -> A. x e. F A. k e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) -. ( k ( .s ` W ) x ) e. ( ( LSpan ` W ) ` ( F \ { x } ) ) ) |
| 18 |
|
simpr |
|- ( ( ( W e. LVec /\ F e. ( LIndS ` W ) ) /\ .0. e. F ) -> .0. e. F ) |
| 19 |
8 17 18
|
rspcdva |
|- ( ( ( W e. LVec /\ F e. ( LIndS ` W ) ) /\ .0. e. F ) -> A. k e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) -. ( k ( .s ` W ) .0. ) e. ( ( LSpan ` W ) ` ( F \ { .0. } ) ) ) |
| 20 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
| 21 |
|
eqid |
|- ( 1r ` ( Scalar ` W ) ) = ( 1r ` ( Scalar ` W ) ) |
| 22 |
12 13 21
|
lmod1cl |
|- ( W e. LMod -> ( 1r ` ( Scalar ` W ) ) e. ( Base ` ( Scalar ` W ) ) ) |
| 23 |
20 22
|
syl |
|- ( W e. LVec -> ( 1r ` ( Scalar ` W ) ) e. ( Base ` ( Scalar ` W ) ) ) |
| 24 |
23
|
adantr |
|- ( ( W e. LVec /\ F e. ( LIndS ` W ) ) -> ( 1r ` ( Scalar ` W ) ) e. ( Base ` ( Scalar ` W ) ) ) |
| 25 |
12
|
lvecdrng |
|- ( W e. LVec -> ( Scalar ` W ) e. DivRing ) |
| 26 |
14 21
|
drngunz |
|- ( ( Scalar ` W ) e. DivRing -> ( 1r ` ( Scalar ` W ) ) =/= ( 0g ` ( Scalar ` W ) ) ) |
| 27 |
25 26
|
syl |
|- ( W e. LVec -> ( 1r ` ( Scalar ` W ) ) =/= ( 0g ` ( Scalar ` W ) ) ) |
| 28 |
27
|
adantr |
|- ( ( W e. LVec /\ F e. ( LIndS ` W ) ) -> ( 1r ` ( Scalar ` W ) ) =/= ( 0g ` ( Scalar ` W ) ) ) |
| 29 |
|
eldifsn |
|- ( ( 1r ` ( Scalar ` W ) ) e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) <-> ( ( 1r ` ( Scalar ` W ) ) e. ( Base ` ( Scalar ` W ) ) /\ ( 1r ` ( Scalar ` W ) ) =/= ( 0g ` ( Scalar ` W ) ) ) ) |
| 30 |
24 28 29
|
sylanbrc |
|- ( ( W e. LVec /\ F e. ( LIndS ` W ) ) -> ( 1r ` ( Scalar ` W ) ) e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) ) |
| 31 |
30
|
adantr |
|- ( ( ( W e. LVec /\ F e. ( LIndS ` W ) ) /\ .0. e. F ) -> ( 1r ` ( Scalar ` W ) ) e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) ) |
| 32 |
20
|
ad2antrr |
|- ( ( ( W e. LVec /\ F e. ( LIndS ` W ) ) /\ .0. e. F ) -> W e. LMod ) |
| 33 |
12 10 13 1
|
lmodvs0 |
|- ( ( W e. LMod /\ ( 1r ` ( Scalar ` W ) ) e. ( Base ` ( Scalar ` W ) ) ) -> ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) .0. ) = .0. ) |
| 34 |
32 22 33
|
syl2anc2 |
|- ( ( ( W e. LVec /\ F e. ( LIndS ` W ) ) /\ .0. e. F ) -> ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) .0. ) = .0. ) |
| 35 |
9
|
linds1 |
|- ( F e. ( LIndS ` W ) -> F C_ ( Base ` W ) ) |
| 36 |
35
|
ad2antlr |
|- ( ( ( W e. LVec /\ F e. ( LIndS ` W ) ) /\ .0. e. F ) -> F C_ ( Base ` W ) ) |
| 37 |
36
|
ssdifssd |
|- ( ( ( W e. LVec /\ F e. ( LIndS ` W ) ) /\ .0. e. F ) -> ( F \ { .0. } ) C_ ( Base ` W ) ) |
| 38 |
1 9 11
|
0ellsp |
|- ( ( W e. LMod /\ ( F \ { .0. } ) C_ ( Base ` W ) ) -> .0. e. ( ( LSpan ` W ) ` ( F \ { .0. } ) ) ) |
| 39 |
32 37 38
|
syl2anc |
|- ( ( ( W e. LVec /\ F e. ( LIndS ` W ) ) /\ .0. e. F ) -> .0. e. ( ( LSpan ` W ) ` ( F \ { .0. } ) ) ) |
| 40 |
34 39
|
eqeltrd |
|- ( ( ( W e. LVec /\ F e. ( LIndS ` W ) ) /\ .0. e. F ) -> ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) .0. ) e. ( ( LSpan ` W ) ` ( F \ { .0. } ) ) ) |
| 41 |
|
oveq1 |
|- ( k = ( 1r ` ( Scalar ` W ) ) -> ( k ( .s ` W ) .0. ) = ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) .0. ) ) |
| 42 |
41
|
eleq1d |
|- ( k = ( 1r ` ( Scalar ` W ) ) -> ( ( k ( .s ` W ) .0. ) e. ( ( LSpan ` W ) ` ( F \ { .0. } ) ) <-> ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) .0. ) e. ( ( LSpan ` W ) ` ( F \ { .0. } ) ) ) ) |
| 43 |
42
|
rspcev |
|- ( ( ( 1r ` ( Scalar ` W ) ) e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) /\ ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) .0. ) e. ( ( LSpan ` W ) ` ( F \ { .0. } ) ) ) -> E. k e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) ( k ( .s ` W ) .0. ) e. ( ( LSpan ` W ) ` ( F \ { .0. } ) ) ) |
| 44 |
31 40 43
|
syl2anc |
|- ( ( ( W e. LVec /\ F e. ( LIndS ` W ) ) /\ .0. e. F ) -> E. k e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) ( k ( .s ` W ) .0. ) e. ( ( LSpan ` W ) ` ( F \ { .0. } ) ) ) |
| 45 |
|
dfrex2 |
|- ( E. k e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) ( k ( .s ` W ) .0. ) e. ( ( LSpan ` W ) ` ( F \ { .0. } ) ) <-> -. A. k e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) -. ( k ( .s ` W ) .0. ) e. ( ( LSpan ` W ) ` ( F \ { .0. } ) ) ) |
| 46 |
44 45
|
sylib |
|- ( ( ( W e. LVec /\ F e. ( LIndS ` W ) ) /\ .0. e. F ) -> -. A. k e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) -. ( k ( .s ` W ) .0. ) e. ( ( LSpan ` W ) ` ( F \ { .0. } ) ) ) |
| 47 |
19 46
|
pm2.65da |
|- ( ( W e. LVec /\ F e. ( LIndS ` W ) ) -> -. .0. e. F ) |