Metamath Proof Explorer


Theorem rspsnel

Description: Membership in a principal ideal. Analogous to lspsnel . (Contributed by Thierry Arnoux, 15-Jan-2024)

Ref Expression
Hypotheses rspsnel.1 B=BaseR
rspsnel.2 ·˙=R
rspsnel.3 K=RSpanR
Assertion rspsnel RRingXBIKXxBI=x·˙X

Proof

Step Hyp Ref Expression
1 rspsnel.1 B=BaseR
2 rspsnel.2 ·˙=R
3 rspsnel.3 K=RSpanR
4 rlmlmod RRingringLModRLMod
5 simpr RRingXBXB
6 5 1 eleqtrdi RRingXBXBaseR
7 eqid ScalarringLModR=ScalarringLModR
8 eqid BaseScalarringLModR=BaseScalarringLModR
9 rlmbas BaseR=BaseringLModR
10 rlmvsca R=ringLModR
11 2 10 eqtri ·˙=ringLModR
12 rspval RSpanR=LSpanringLModR
13 3 12 eqtri K=LSpanringLModR
14 7 8 9 11 13 lspsnel ringLModRLModXBaseRIKXxBaseScalarringLModRI=x·˙X
15 4 6 14 syl2an2r RRingXBIKXxBaseScalarringLModRI=x·˙X
16 rlmsca RRingR=ScalarringLModR
17 16 adantr RRingXBR=ScalarringLModR
18 17 fveq2d RRingXBBaseR=BaseScalarringLModR
19 1 18 eqtr2id RRingXBBaseScalarringLModR=B
20 19 rexeqdv RRingXBxBaseScalarringLModRI=x·˙XxBI=x·˙X
21 15 20 bitrd RRingXBIKXxBI=x·˙X