Step |
Hyp |
Ref |
Expression |
1 |
|
lvecdim0.1 |
|- .0. = ( 0g ` V ) |
2 |
1
|
lvecdim0i |
|- ( ( V e. LVec /\ ( dim ` V ) = 0 ) -> ( Base ` V ) = { .0. } ) |
3 |
|
simpl |
|- ( ( V e. LVec /\ ( Base ` V ) = { .0. } ) -> V e. LVec ) |
4 |
|
eqid |
|- ( LBasis ` V ) = ( LBasis ` V ) |
5 |
4
|
lbsex |
|- ( V e. LVec -> ( LBasis ` V ) =/= (/) ) |
6 |
|
n0 |
|- ( ( LBasis ` V ) =/= (/) <-> E. b b e. ( LBasis ` V ) ) |
7 |
5 6
|
sylib |
|- ( V e. LVec -> E. b b e. ( LBasis ` V ) ) |
8 |
3 7
|
syl |
|- ( ( V e. LVec /\ ( Base ` V ) = { .0. } ) -> E. b b e. ( LBasis ` V ) ) |
9 |
1
|
fvexi |
|- .0. e. _V |
10 |
9
|
snid |
|- .0. e. { .0. } |
11 |
|
simpr |
|- ( ( ( ( V e. LVec /\ ( Base ` V ) = { .0. } ) /\ b e. ( LBasis ` V ) ) /\ b = { .0. } ) -> b = { .0. } ) |
12 |
10 11
|
eleqtrrid |
|- ( ( ( ( V e. LVec /\ ( Base ` V ) = { .0. } ) /\ b e. ( LBasis ` V ) ) /\ b = { .0. } ) -> .0. e. b ) |
13 |
|
simplll |
|- ( ( ( ( V e. LVec /\ ( Base ` V ) = { .0. } ) /\ b e. ( LBasis ` V ) ) /\ b = { .0. } ) -> V e. LVec ) |
14 |
4
|
lbslinds |
|- ( LBasis ` V ) C_ ( LIndS ` V ) |
15 |
|
simplr |
|- ( ( ( ( V e. LVec /\ ( Base ` V ) = { .0. } ) /\ b e. ( LBasis ` V ) ) /\ b = { .0. } ) -> b e. ( LBasis ` V ) ) |
16 |
14 15
|
sselid |
|- ( ( ( ( V e. LVec /\ ( Base ` V ) = { .0. } ) /\ b e. ( LBasis ` V ) ) /\ b = { .0. } ) -> b e. ( LIndS ` V ) ) |
17 |
1
|
0nellinds |
|- ( ( V e. LVec /\ b e. ( LIndS ` V ) ) -> -. .0. e. b ) |
18 |
13 16 17
|
syl2anc |
|- ( ( ( ( V e. LVec /\ ( Base ` V ) = { .0. } ) /\ b e. ( LBasis ` V ) ) /\ b = { .0. } ) -> -. .0. e. b ) |
19 |
12 18
|
pm2.65da |
|- ( ( ( V e. LVec /\ ( Base ` V ) = { .0. } ) /\ b e. ( LBasis ` V ) ) -> -. b = { .0. } ) |
20 |
|
simpr |
|- ( ( ( V e. LVec /\ ( Base ` V ) = { .0. } ) /\ b e. ( LBasis ` V ) ) -> b e. ( LBasis ` V ) ) |
21 |
|
eqid |
|- ( Base ` V ) = ( Base ` V ) |
22 |
21 4
|
lbsss |
|- ( b e. ( LBasis ` V ) -> b C_ ( Base ` V ) ) |
23 |
20 22
|
syl |
|- ( ( ( V e. LVec /\ ( Base ` V ) = { .0. } ) /\ b e. ( LBasis ` V ) ) -> b C_ ( Base ` V ) ) |
24 |
|
simplr |
|- ( ( ( V e. LVec /\ ( Base ` V ) = { .0. } ) /\ b e. ( LBasis ` V ) ) -> ( Base ` V ) = { .0. } ) |
25 |
23 24
|
sseqtrd |
|- ( ( ( V e. LVec /\ ( Base ` V ) = { .0. } ) /\ b e. ( LBasis ` V ) ) -> b C_ { .0. } ) |
26 |
|
sssn |
|- ( b C_ { .0. } <-> ( b = (/) \/ b = { .0. } ) ) |
27 |
25 26
|
sylib |
|- ( ( ( V e. LVec /\ ( Base ` V ) = { .0. } ) /\ b e. ( LBasis ` V ) ) -> ( b = (/) \/ b = { .0. } ) ) |
28 |
27
|
orcomd |
|- ( ( ( V e. LVec /\ ( Base ` V ) = { .0. } ) /\ b e. ( LBasis ` V ) ) -> ( b = { .0. } \/ b = (/) ) ) |
29 |
28
|
ord |
|- ( ( ( V e. LVec /\ ( Base ` V ) = { .0. } ) /\ b e. ( LBasis ` V ) ) -> ( -. b = { .0. } -> b = (/) ) ) |
30 |
19 29
|
mpd |
|- ( ( ( V e. LVec /\ ( Base ` V ) = { .0. } ) /\ b e. ( LBasis ` V ) ) -> b = (/) ) |
31 |
30 20
|
eqeltrrd |
|- ( ( ( V e. LVec /\ ( Base ` V ) = { .0. } ) /\ b e. ( LBasis ` V ) ) -> (/) e. ( LBasis ` V ) ) |
32 |
8 31
|
exlimddv |
|- ( ( V e. LVec /\ ( Base ` V ) = { .0. } ) -> (/) e. ( LBasis ` V ) ) |
33 |
4
|
dimval |
|- ( ( V e. LVec /\ (/) e. ( LBasis ` V ) ) -> ( dim ` V ) = ( # ` (/) ) ) |
34 |
3 32 33
|
syl2anc |
|- ( ( V e. LVec /\ ( Base ` V ) = { .0. } ) -> ( dim ` V ) = ( # ` (/) ) ) |
35 |
|
hash0 |
|- ( # ` (/) ) = 0 |
36 |
34 35
|
eqtrdi |
|- ( ( V e. LVec /\ ( Base ` V ) = { .0. } ) -> ( dim ` V ) = 0 ) |
37 |
2 36
|
impbida |
|- ( V e. LVec -> ( ( dim ` V ) = 0 <-> ( Base ` V ) = { .0. } ) ) |