Step |
Hyp |
Ref |
Expression |
1 |
|
lssdimle.x |
|- X = ( W |`s U ) |
2 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
3 |
1 2
|
lsslvec |
|- ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) -> X e. LVec ) |
4 |
|
eqid |
|- ( LBasis ` X ) = ( LBasis ` X ) |
5 |
4
|
lbsex |
|- ( X e. LVec -> ( LBasis ` X ) =/= (/) ) |
6 |
3 5
|
syl |
|- ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) -> ( LBasis ` X ) =/= (/) ) |
7 |
|
n0 |
|- ( ( LBasis ` X ) =/= (/) <-> E. x x e. ( LBasis ` X ) ) |
8 |
6 7
|
sylib |
|- ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) -> E. x x e. ( LBasis ` X ) ) |
9 |
|
hashss |
|- ( ( w e. ( LBasis ` W ) /\ x C_ w ) -> ( # ` x ) <_ ( # ` w ) ) |
10 |
9
|
adantll |
|- ( ( ( ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) /\ x e. ( LBasis ` X ) ) /\ w e. ( LBasis ` W ) ) /\ x C_ w ) -> ( # ` x ) <_ ( # ` w ) ) |
11 |
4
|
dimval |
|- ( ( X e. LVec /\ x e. ( LBasis ` X ) ) -> ( dim ` X ) = ( # ` x ) ) |
12 |
3 11
|
sylan |
|- ( ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) /\ x e. ( LBasis ` X ) ) -> ( dim ` X ) = ( # ` x ) ) |
13 |
12
|
ad2antrr |
|- ( ( ( ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) /\ x e. ( LBasis ` X ) ) /\ w e. ( LBasis ` W ) ) /\ x C_ w ) -> ( dim ` X ) = ( # ` x ) ) |
14 |
|
eqid |
|- ( LBasis ` W ) = ( LBasis ` W ) |
15 |
14
|
dimval |
|- ( ( W e. LVec /\ w e. ( LBasis ` W ) ) -> ( dim ` W ) = ( # ` w ) ) |
16 |
15
|
ad5ant14 |
|- ( ( ( ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) /\ x e. ( LBasis ` X ) ) /\ w e. ( LBasis ` W ) ) /\ x C_ w ) -> ( dim ` W ) = ( # ` w ) ) |
17 |
10 13 16
|
3brtr4d |
|- ( ( ( ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) /\ x e. ( LBasis ` X ) ) /\ w e. ( LBasis ` W ) ) /\ x C_ w ) -> ( dim ` X ) <_ ( dim ` W ) ) |
18 |
|
simpll |
|- ( ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) /\ x e. ( LBasis ` X ) ) -> W e. LVec ) |
19 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
20 |
19
|
ad2antrr |
|- ( ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) /\ x e. ( LBasis ` X ) ) -> W e. LMod ) |
21 |
|
simplr |
|- ( ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) /\ x e. ( LBasis ` X ) ) -> U e. ( LSubSp ` W ) ) |
22 |
|
simpr |
|- ( ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) /\ x e. ( LBasis ` X ) ) -> x e. ( LBasis ` X ) ) |
23 |
|
eqid |
|- ( Base ` X ) = ( Base ` X ) |
24 |
23 4
|
lbsss |
|- ( x e. ( LBasis ` X ) -> x C_ ( Base ` X ) ) |
25 |
22 24
|
syl |
|- ( ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) /\ x e. ( LBasis ` X ) ) -> x C_ ( Base ` X ) ) |
26 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
27 |
26 2
|
lssss |
|- ( U e. ( LSubSp ` W ) -> U C_ ( Base ` W ) ) |
28 |
1 26
|
ressbas2 |
|- ( U C_ ( Base ` W ) -> U = ( Base ` X ) ) |
29 |
21 27 28
|
3syl |
|- ( ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) /\ x e. ( LBasis ` X ) ) -> U = ( Base ` X ) ) |
30 |
25 29
|
sseqtrrd |
|- ( ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) /\ x e. ( LBasis ` X ) ) -> x C_ U ) |
31 |
4
|
lbslinds |
|- ( LBasis ` X ) C_ ( LIndS ` X ) |
32 |
31 22
|
sselid |
|- ( ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) /\ x e. ( LBasis ` X ) ) -> x e. ( LIndS ` X ) ) |
33 |
2 1
|
lsslinds |
|- ( ( W e. LMod /\ U e. ( LSubSp ` W ) /\ x C_ U ) -> ( x e. ( LIndS ` X ) <-> x e. ( LIndS ` W ) ) ) |
34 |
33
|
biimpa |
|- ( ( ( W e. LMod /\ U e. ( LSubSp ` W ) /\ x C_ U ) /\ x e. ( LIndS ` X ) ) -> x e. ( LIndS ` W ) ) |
35 |
20 21 30 32 34
|
syl31anc |
|- ( ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) /\ x e. ( LBasis ` X ) ) -> x e. ( LIndS ` W ) ) |
36 |
14
|
islinds4 |
|- ( W e. LVec -> ( x e. ( LIndS ` W ) <-> E. w e. ( LBasis ` W ) x C_ w ) ) |
37 |
36
|
biimpa |
|- ( ( W e. LVec /\ x e. ( LIndS ` W ) ) -> E. w e. ( LBasis ` W ) x C_ w ) |
38 |
18 35 37
|
syl2anc |
|- ( ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) /\ x e. ( LBasis ` X ) ) -> E. w e. ( LBasis ` W ) x C_ w ) |
39 |
17 38
|
r19.29a |
|- ( ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) /\ x e. ( LBasis ` X ) ) -> ( dim ` X ) <_ ( dim ` W ) ) |
40 |
8 39
|
exlimddv |
|- ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) -> ( dim ` X ) <_ ( dim ` W ) ) |