| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lssdimle.x |
|- X = ( W |`s U ) |
| 2 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
| 3 |
1 2
|
lsslvec |
|- ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) -> X e. LVec ) |
| 4 |
|
eqid |
|- ( LBasis ` X ) = ( LBasis ` X ) |
| 5 |
4
|
lbsex |
|- ( X e. LVec -> ( LBasis ` X ) =/= (/) ) |
| 6 |
3 5
|
syl |
|- ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) -> ( LBasis ` X ) =/= (/) ) |
| 7 |
|
n0 |
|- ( ( LBasis ` X ) =/= (/) <-> E. x x e. ( LBasis ` X ) ) |
| 8 |
6 7
|
sylib |
|- ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) -> E. x x e. ( LBasis ` X ) ) |
| 9 |
|
hashss |
|- ( ( w e. ( LBasis ` W ) /\ x C_ w ) -> ( # ` x ) <_ ( # ` w ) ) |
| 10 |
9
|
adantll |
|- ( ( ( ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) /\ x e. ( LBasis ` X ) ) /\ w e. ( LBasis ` W ) ) /\ x C_ w ) -> ( # ` x ) <_ ( # ` w ) ) |
| 11 |
4
|
dimval |
|- ( ( X e. LVec /\ x e. ( LBasis ` X ) ) -> ( dim ` X ) = ( # ` x ) ) |
| 12 |
3 11
|
sylan |
|- ( ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) /\ x e. ( LBasis ` X ) ) -> ( dim ` X ) = ( # ` x ) ) |
| 13 |
12
|
ad2antrr |
|- ( ( ( ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) /\ x e. ( LBasis ` X ) ) /\ w e. ( LBasis ` W ) ) /\ x C_ w ) -> ( dim ` X ) = ( # ` x ) ) |
| 14 |
|
eqid |
|- ( LBasis ` W ) = ( LBasis ` W ) |
| 15 |
14
|
dimval |
|- ( ( W e. LVec /\ w e. ( LBasis ` W ) ) -> ( dim ` W ) = ( # ` w ) ) |
| 16 |
15
|
ad5ant14 |
|- ( ( ( ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) /\ x e. ( LBasis ` X ) ) /\ w e. ( LBasis ` W ) ) /\ x C_ w ) -> ( dim ` W ) = ( # ` w ) ) |
| 17 |
10 13 16
|
3brtr4d |
|- ( ( ( ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) /\ x e. ( LBasis ` X ) ) /\ w e. ( LBasis ` W ) ) /\ x C_ w ) -> ( dim ` X ) <_ ( dim ` W ) ) |
| 18 |
|
simpll |
|- ( ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) /\ x e. ( LBasis ` X ) ) -> W e. LVec ) |
| 19 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
| 20 |
19
|
ad2antrr |
|- ( ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) /\ x e. ( LBasis ` X ) ) -> W e. LMod ) |
| 21 |
|
simplr |
|- ( ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) /\ x e. ( LBasis ` X ) ) -> U e. ( LSubSp ` W ) ) |
| 22 |
|
simpr |
|- ( ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) /\ x e. ( LBasis ` X ) ) -> x e. ( LBasis ` X ) ) |
| 23 |
|
eqid |
|- ( Base ` X ) = ( Base ` X ) |
| 24 |
23 4
|
lbsss |
|- ( x e. ( LBasis ` X ) -> x C_ ( Base ` X ) ) |
| 25 |
22 24
|
syl |
|- ( ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) /\ x e. ( LBasis ` X ) ) -> x C_ ( Base ` X ) ) |
| 26 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 27 |
26 2
|
lssss |
|- ( U e. ( LSubSp ` W ) -> U C_ ( Base ` W ) ) |
| 28 |
1 26
|
ressbas2 |
|- ( U C_ ( Base ` W ) -> U = ( Base ` X ) ) |
| 29 |
21 27 28
|
3syl |
|- ( ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) /\ x e. ( LBasis ` X ) ) -> U = ( Base ` X ) ) |
| 30 |
25 29
|
sseqtrrd |
|- ( ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) /\ x e. ( LBasis ` X ) ) -> x C_ U ) |
| 31 |
4
|
lbslinds |
|- ( LBasis ` X ) C_ ( LIndS ` X ) |
| 32 |
31 22
|
sselid |
|- ( ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) /\ x e. ( LBasis ` X ) ) -> x e. ( LIndS ` X ) ) |
| 33 |
2 1
|
lsslinds |
|- ( ( W e. LMod /\ U e. ( LSubSp ` W ) /\ x C_ U ) -> ( x e. ( LIndS ` X ) <-> x e. ( LIndS ` W ) ) ) |
| 34 |
33
|
biimpa |
|- ( ( ( W e. LMod /\ U e. ( LSubSp ` W ) /\ x C_ U ) /\ x e. ( LIndS ` X ) ) -> x e. ( LIndS ` W ) ) |
| 35 |
20 21 30 32 34
|
syl31anc |
|- ( ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) /\ x e. ( LBasis ` X ) ) -> x e. ( LIndS ` W ) ) |
| 36 |
14
|
islinds4 |
|- ( W e. LVec -> ( x e. ( LIndS ` W ) <-> E. w e. ( LBasis ` W ) x C_ w ) ) |
| 37 |
36
|
biimpa |
|- ( ( W e. LVec /\ x e. ( LIndS ` W ) ) -> E. w e. ( LBasis ` W ) x C_ w ) |
| 38 |
18 35 37
|
syl2anc |
|- ( ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) /\ x e. ( LBasis ` X ) ) -> E. w e. ( LBasis ` W ) x C_ w ) |
| 39 |
17 38
|
r19.29a |
|- ( ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) /\ x e. ( LBasis ` X ) ) -> ( dim ` X ) <_ ( dim ` W ) ) |
| 40 |
8 39
|
exlimddv |
|- ( ( W e. LVec /\ U e. ( LSubSp ` W ) ) -> ( dim ` X ) <_ ( dim ` W ) ) |