| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lssdimle.x |
⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) |
| 2 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
| 3 |
1 2
|
lsslvec |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) → 𝑋 ∈ LVec ) |
| 4 |
|
eqid |
⊢ ( LBasis ‘ 𝑋 ) = ( LBasis ‘ 𝑋 ) |
| 5 |
4
|
lbsex |
⊢ ( 𝑋 ∈ LVec → ( LBasis ‘ 𝑋 ) ≠ ∅ ) |
| 6 |
3 5
|
syl |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) → ( LBasis ‘ 𝑋 ) ≠ ∅ ) |
| 7 |
|
n0 |
⊢ ( ( LBasis ‘ 𝑋 ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( LBasis ‘ 𝑋 ) ) |
| 8 |
6 7
|
sylib |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) → ∃ 𝑥 𝑥 ∈ ( LBasis ‘ 𝑋 ) ) |
| 9 |
|
hashss |
⊢ ( ( 𝑤 ∈ ( LBasis ‘ 𝑊 ) ∧ 𝑥 ⊆ 𝑤 ) → ( ♯ ‘ 𝑥 ) ≤ ( ♯ ‘ 𝑤 ) ) |
| 10 |
9
|
adantll |
⊢ ( ( ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( LBasis ‘ 𝑋 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝑊 ) ) ∧ 𝑥 ⊆ 𝑤 ) → ( ♯ ‘ 𝑥 ) ≤ ( ♯ ‘ 𝑤 ) ) |
| 11 |
4
|
dimval |
⊢ ( ( 𝑋 ∈ LVec ∧ 𝑥 ∈ ( LBasis ‘ 𝑋 ) ) → ( dim ‘ 𝑋 ) = ( ♯ ‘ 𝑥 ) ) |
| 12 |
3 11
|
sylan |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( LBasis ‘ 𝑋 ) ) → ( dim ‘ 𝑋 ) = ( ♯ ‘ 𝑥 ) ) |
| 13 |
12
|
ad2antrr |
⊢ ( ( ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( LBasis ‘ 𝑋 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝑊 ) ) ∧ 𝑥 ⊆ 𝑤 ) → ( dim ‘ 𝑋 ) = ( ♯ ‘ 𝑥 ) ) |
| 14 |
|
eqid |
⊢ ( LBasis ‘ 𝑊 ) = ( LBasis ‘ 𝑊 ) |
| 15 |
14
|
dimval |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑤 ∈ ( LBasis ‘ 𝑊 ) ) → ( dim ‘ 𝑊 ) = ( ♯ ‘ 𝑤 ) ) |
| 16 |
15
|
ad5ant14 |
⊢ ( ( ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( LBasis ‘ 𝑋 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝑊 ) ) ∧ 𝑥 ⊆ 𝑤 ) → ( dim ‘ 𝑊 ) = ( ♯ ‘ 𝑤 ) ) |
| 17 |
10 13 16
|
3brtr4d |
⊢ ( ( ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( LBasis ‘ 𝑋 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝑊 ) ) ∧ 𝑥 ⊆ 𝑤 ) → ( dim ‘ 𝑋 ) ≤ ( dim ‘ 𝑊 ) ) |
| 18 |
|
simpll |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( LBasis ‘ 𝑋 ) ) → 𝑊 ∈ LVec ) |
| 19 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
| 20 |
19
|
ad2antrr |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( LBasis ‘ 𝑋 ) ) → 𝑊 ∈ LMod ) |
| 21 |
|
simplr |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( LBasis ‘ 𝑋 ) ) → 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) |
| 22 |
|
simpr |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( LBasis ‘ 𝑋 ) ) → 𝑥 ∈ ( LBasis ‘ 𝑋 ) ) |
| 23 |
|
eqid |
⊢ ( Base ‘ 𝑋 ) = ( Base ‘ 𝑋 ) |
| 24 |
23 4
|
lbsss |
⊢ ( 𝑥 ∈ ( LBasis ‘ 𝑋 ) → 𝑥 ⊆ ( Base ‘ 𝑋 ) ) |
| 25 |
22 24
|
syl |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( LBasis ‘ 𝑋 ) ) → 𝑥 ⊆ ( Base ‘ 𝑋 ) ) |
| 26 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 27 |
26 2
|
lssss |
⊢ ( 𝑈 ∈ ( LSubSp ‘ 𝑊 ) → 𝑈 ⊆ ( Base ‘ 𝑊 ) ) |
| 28 |
1 26
|
ressbas2 |
⊢ ( 𝑈 ⊆ ( Base ‘ 𝑊 ) → 𝑈 = ( Base ‘ 𝑋 ) ) |
| 29 |
21 27 28
|
3syl |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( LBasis ‘ 𝑋 ) ) → 𝑈 = ( Base ‘ 𝑋 ) ) |
| 30 |
25 29
|
sseqtrrd |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( LBasis ‘ 𝑋 ) ) → 𝑥 ⊆ 𝑈 ) |
| 31 |
4
|
lbslinds |
⊢ ( LBasis ‘ 𝑋 ) ⊆ ( LIndS ‘ 𝑋 ) |
| 32 |
31 22
|
sselid |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( LBasis ‘ 𝑋 ) ) → 𝑥 ∈ ( LIndS ‘ 𝑋 ) ) |
| 33 |
2 1
|
lsslinds |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑥 ⊆ 𝑈 ) → ( 𝑥 ∈ ( LIndS ‘ 𝑋 ) ↔ 𝑥 ∈ ( LIndS ‘ 𝑊 ) ) ) |
| 34 |
33
|
biimpa |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑥 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( LIndS ‘ 𝑋 ) ) → 𝑥 ∈ ( LIndS ‘ 𝑊 ) ) |
| 35 |
20 21 30 32 34
|
syl31anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( LBasis ‘ 𝑋 ) ) → 𝑥 ∈ ( LIndS ‘ 𝑊 ) ) |
| 36 |
14
|
islinds4 |
⊢ ( 𝑊 ∈ LVec → ( 𝑥 ∈ ( LIndS ‘ 𝑊 ) ↔ ∃ 𝑤 ∈ ( LBasis ‘ 𝑊 ) 𝑥 ⊆ 𝑤 ) ) |
| 37 |
36
|
biimpa |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑥 ∈ ( LIndS ‘ 𝑊 ) ) → ∃ 𝑤 ∈ ( LBasis ‘ 𝑊 ) 𝑥 ⊆ 𝑤 ) |
| 38 |
18 35 37
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( LBasis ‘ 𝑋 ) ) → ∃ 𝑤 ∈ ( LBasis ‘ 𝑊 ) 𝑥 ⊆ 𝑤 ) |
| 39 |
17 38
|
r19.29a |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( LBasis ‘ 𝑋 ) ) → ( dim ‘ 𝑋 ) ≤ ( dim ‘ 𝑊 ) ) |
| 40 |
8 39
|
exlimddv |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) → ( dim ‘ 𝑋 ) ≤ ( dim ‘ 𝑊 ) ) |