Step |
Hyp |
Ref |
Expression |
1 |
|
lssdimle.x |
⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) |
2 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
3 |
1 2
|
lsslvec |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) → 𝑋 ∈ LVec ) |
4 |
|
eqid |
⊢ ( LBasis ‘ 𝑋 ) = ( LBasis ‘ 𝑋 ) |
5 |
4
|
lbsex |
⊢ ( 𝑋 ∈ LVec → ( LBasis ‘ 𝑋 ) ≠ ∅ ) |
6 |
3 5
|
syl |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) → ( LBasis ‘ 𝑋 ) ≠ ∅ ) |
7 |
|
n0 |
⊢ ( ( LBasis ‘ 𝑋 ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( LBasis ‘ 𝑋 ) ) |
8 |
6 7
|
sylib |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) → ∃ 𝑥 𝑥 ∈ ( LBasis ‘ 𝑋 ) ) |
9 |
|
hashss |
⊢ ( ( 𝑤 ∈ ( LBasis ‘ 𝑊 ) ∧ 𝑥 ⊆ 𝑤 ) → ( ♯ ‘ 𝑥 ) ≤ ( ♯ ‘ 𝑤 ) ) |
10 |
9
|
adantll |
⊢ ( ( ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( LBasis ‘ 𝑋 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝑊 ) ) ∧ 𝑥 ⊆ 𝑤 ) → ( ♯ ‘ 𝑥 ) ≤ ( ♯ ‘ 𝑤 ) ) |
11 |
4
|
dimval |
⊢ ( ( 𝑋 ∈ LVec ∧ 𝑥 ∈ ( LBasis ‘ 𝑋 ) ) → ( dim ‘ 𝑋 ) = ( ♯ ‘ 𝑥 ) ) |
12 |
3 11
|
sylan |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( LBasis ‘ 𝑋 ) ) → ( dim ‘ 𝑋 ) = ( ♯ ‘ 𝑥 ) ) |
13 |
12
|
ad2antrr |
⊢ ( ( ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( LBasis ‘ 𝑋 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝑊 ) ) ∧ 𝑥 ⊆ 𝑤 ) → ( dim ‘ 𝑋 ) = ( ♯ ‘ 𝑥 ) ) |
14 |
|
eqid |
⊢ ( LBasis ‘ 𝑊 ) = ( LBasis ‘ 𝑊 ) |
15 |
14
|
dimval |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑤 ∈ ( LBasis ‘ 𝑊 ) ) → ( dim ‘ 𝑊 ) = ( ♯ ‘ 𝑤 ) ) |
16 |
15
|
ad5ant14 |
⊢ ( ( ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( LBasis ‘ 𝑋 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝑊 ) ) ∧ 𝑥 ⊆ 𝑤 ) → ( dim ‘ 𝑊 ) = ( ♯ ‘ 𝑤 ) ) |
17 |
10 13 16
|
3brtr4d |
⊢ ( ( ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( LBasis ‘ 𝑋 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝑊 ) ) ∧ 𝑥 ⊆ 𝑤 ) → ( dim ‘ 𝑋 ) ≤ ( dim ‘ 𝑊 ) ) |
18 |
|
simpll |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( LBasis ‘ 𝑋 ) ) → 𝑊 ∈ LVec ) |
19 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
20 |
19
|
ad2antrr |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( LBasis ‘ 𝑋 ) ) → 𝑊 ∈ LMod ) |
21 |
|
simplr |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( LBasis ‘ 𝑋 ) ) → 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) |
22 |
|
simpr |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( LBasis ‘ 𝑋 ) ) → 𝑥 ∈ ( LBasis ‘ 𝑋 ) ) |
23 |
|
eqid |
⊢ ( Base ‘ 𝑋 ) = ( Base ‘ 𝑋 ) |
24 |
23 4
|
lbsss |
⊢ ( 𝑥 ∈ ( LBasis ‘ 𝑋 ) → 𝑥 ⊆ ( Base ‘ 𝑋 ) ) |
25 |
22 24
|
syl |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( LBasis ‘ 𝑋 ) ) → 𝑥 ⊆ ( Base ‘ 𝑋 ) ) |
26 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
27 |
26 2
|
lssss |
⊢ ( 𝑈 ∈ ( LSubSp ‘ 𝑊 ) → 𝑈 ⊆ ( Base ‘ 𝑊 ) ) |
28 |
1 26
|
ressbas2 |
⊢ ( 𝑈 ⊆ ( Base ‘ 𝑊 ) → 𝑈 = ( Base ‘ 𝑋 ) ) |
29 |
21 27 28
|
3syl |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( LBasis ‘ 𝑋 ) ) → 𝑈 = ( Base ‘ 𝑋 ) ) |
30 |
25 29
|
sseqtrrd |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( LBasis ‘ 𝑋 ) ) → 𝑥 ⊆ 𝑈 ) |
31 |
4
|
lbslinds |
⊢ ( LBasis ‘ 𝑋 ) ⊆ ( LIndS ‘ 𝑋 ) |
32 |
31 22
|
sselid |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( LBasis ‘ 𝑋 ) ) → 𝑥 ∈ ( LIndS ‘ 𝑋 ) ) |
33 |
2 1
|
lsslinds |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑥 ⊆ 𝑈 ) → ( 𝑥 ∈ ( LIndS ‘ 𝑋 ) ↔ 𝑥 ∈ ( LIndS ‘ 𝑊 ) ) ) |
34 |
33
|
biimpa |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑥 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( LIndS ‘ 𝑋 ) ) → 𝑥 ∈ ( LIndS ‘ 𝑊 ) ) |
35 |
20 21 30 32 34
|
syl31anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( LBasis ‘ 𝑋 ) ) → 𝑥 ∈ ( LIndS ‘ 𝑊 ) ) |
36 |
14
|
islinds4 |
⊢ ( 𝑊 ∈ LVec → ( 𝑥 ∈ ( LIndS ‘ 𝑊 ) ↔ ∃ 𝑤 ∈ ( LBasis ‘ 𝑊 ) 𝑥 ⊆ 𝑤 ) ) |
37 |
36
|
biimpa |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑥 ∈ ( LIndS ‘ 𝑊 ) ) → ∃ 𝑤 ∈ ( LBasis ‘ 𝑊 ) 𝑥 ⊆ 𝑤 ) |
38 |
18 35 37
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( LBasis ‘ 𝑋 ) ) → ∃ 𝑤 ∈ ( LBasis ‘ 𝑊 ) 𝑥 ⊆ 𝑤 ) |
39 |
17 38
|
r19.29a |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( LBasis ‘ 𝑋 ) ) → ( dim ‘ 𝑋 ) ≤ ( dim ‘ 𝑊 ) ) |
40 |
8 39
|
exlimddv |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) → ( dim ‘ 𝑋 ) ≤ ( dim ‘ 𝑊 ) ) |