| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dimpropd.b1 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) |
| 2 |
|
dimpropd.b2 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) |
| 3 |
|
dimpropd.w |
⊢ ( 𝜑 → 𝐵 ⊆ 𝑊 ) |
| 4 |
|
dimpropd.p |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) |
| 5 |
|
dimpropd.s1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐾 ) 𝑦 ) ∈ 𝑊 ) |
| 6 |
|
dimpropd.s2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝐿 ) 𝑦 ) ) |
| 7 |
|
dimpropd.f |
⊢ 𝐹 = ( Scalar ‘ 𝐾 ) |
| 8 |
|
dimpropd.g |
⊢ 𝐺 = ( Scalar ‘ 𝐿 ) |
| 9 |
|
dimpropd.p1 |
⊢ ( 𝜑 → 𝑃 = ( Base ‘ 𝐹 ) ) |
| 10 |
|
dimpropd.p2 |
⊢ ( 𝜑 → 𝑃 = ( Base ‘ 𝐺 ) ) |
| 11 |
|
dimpropd.a |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ) → ( 𝑥 ( +g ‘ 𝐹 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) |
| 12 |
|
dimpropd.v1 |
⊢ ( 𝜑 → 𝐾 ∈ LVec ) |
| 13 |
|
dimpropd.v2 |
⊢ ( 𝜑 → 𝐿 ∈ LVec ) |
| 14 |
|
eqid |
⊢ ( LBasis ‘ 𝐾 ) = ( LBasis ‘ 𝐾 ) |
| 15 |
14
|
lbsex |
⊢ ( 𝐾 ∈ LVec → ( LBasis ‘ 𝐾 ) ≠ ∅ ) |
| 16 |
12 15
|
syl |
⊢ ( 𝜑 → ( LBasis ‘ 𝐾 ) ≠ ∅ ) |
| 17 |
|
n0 |
⊢ ( ( LBasis ‘ 𝐾 ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( LBasis ‘ 𝐾 ) ) |
| 18 |
16 17
|
sylib |
⊢ ( 𝜑 → ∃ 𝑥 𝑥 ∈ ( LBasis ‘ 𝐾 ) ) |
| 19 |
14
|
dimval |
⊢ ( ( 𝐾 ∈ LVec ∧ 𝑥 ∈ ( LBasis ‘ 𝐾 ) ) → ( dim ‘ 𝐾 ) = ( ♯ ‘ 𝑥 ) ) |
| 20 |
12 19
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐾 ) ) → ( dim ‘ 𝐾 ) = ( ♯ ‘ 𝑥 ) ) |
| 21 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
lbspropd |
⊢ ( 𝜑 → ( LBasis ‘ 𝐾 ) = ( LBasis ‘ 𝐿 ) ) |
| 22 |
21
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( LBasis ‘ 𝐾 ) ↔ 𝑥 ∈ ( LBasis ‘ 𝐿 ) ) ) |
| 23 |
22
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐾 ) ) → 𝑥 ∈ ( LBasis ‘ 𝐿 ) ) |
| 24 |
|
eqid |
⊢ ( LBasis ‘ 𝐿 ) = ( LBasis ‘ 𝐿 ) |
| 25 |
24
|
dimval |
⊢ ( ( 𝐿 ∈ LVec ∧ 𝑥 ∈ ( LBasis ‘ 𝐿 ) ) → ( dim ‘ 𝐿 ) = ( ♯ ‘ 𝑥 ) ) |
| 26 |
13 23 25
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐾 ) ) → ( dim ‘ 𝐿 ) = ( ♯ ‘ 𝑥 ) ) |
| 27 |
20 26
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐾 ) ) → ( dim ‘ 𝐾 ) = ( dim ‘ 𝐿 ) ) |
| 28 |
18 27
|
exlimddv |
⊢ ( 𝜑 → ( dim ‘ 𝐾 ) = ( dim ‘ 𝐿 ) ) |