Metamath Proof Explorer


Theorem dimpropd

Description: If two structures have the same components (properties), they have the same dimension. (Contributed by Thierry Arnoux, 18-May-2023)

Ref Expression
Hypotheses dimpropd.b1 ( 𝜑𝐵 = ( Base ‘ 𝐾 ) )
dimpropd.b2 ( 𝜑𝐵 = ( Base ‘ 𝐿 ) )
dimpropd.w ( 𝜑𝐵𝑊 )
dimpropd.p ( ( 𝜑 ∧ ( 𝑥𝑊𝑦𝑊 ) ) → ( 𝑥 ( +g𝐾 ) 𝑦 ) = ( 𝑥 ( +g𝐿 ) 𝑦 ) )
dimpropd.s1 ( ( 𝜑 ∧ ( 𝑥𝑃𝑦𝐵 ) ) → ( 𝑥 ( ·𝑠𝐾 ) 𝑦 ) ∈ 𝑊 )
dimpropd.s2 ( ( 𝜑 ∧ ( 𝑥𝑃𝑦𝐵 ) ) → ( 𝑥 ( ·𝑠𝐾 ) 𝑦 ) = ( 𝑥 ( ·𝑠𝐿 ) 𝑦 ) )
dimpropd.f 𝐹 = ( Scalar ‘ 𝐾 )
dimpropd.g 𝐺 = ( Scalar ‘ 𝐿 )
dimpropd.p1 ( 𝜑𝑃 = ( Base ‘ 𝐹 ) )
dimpropd.p2 ( 𝜑𝑃 = ( Base ‘ 𝐺 ) )
dimpropd.a ( ( 𝜑 ∧ ( 𝑥𝑃𝑦𝑃 ) ) → ( 𝑥 ( +g𝐹 ) 𝑦 ) = ( 𝑥 ( +g𝐺 ) 𝑦 ) )
dimpropd.v1 ( 𝜑𝐾 ∈ LVec )
dimpropd.v2 ( 𝜑𝐿 ∈ LVec )
Assertion dimpropd ( 𝜑 → ( dim ‘ 𝐾 ) = ( dim ‘ 𝐿 ) )

Proof

Step Hyp Ref Expression
1 dimpropd.b1 ( 𝜑𝐵 = ( Base ‘ 𝐾 ) )
2 dimpropd.b2 ( 𝜑𝐵 = ( Base ‘ 𝐿 ) )
3 dimpropd.w ( 𝜑𝐵𝑊 )
4 dimpropd.p ( ( 𝜑 ∧ ( 𝑥𝑊𝑦𝑊 ) ) → ( 𝑥 ( +g𝐾 ) 𝑦 ) = ( 𝑥 ( +g𝐿 ) 𝑦 ) )
5 dimpropd.s1 ( ( 𝜑 ∧ ( 𝑥𝑃𝑦𝐵 ) ) → ( 𝑥 ( ·𝑠𝐾 ) 𝑦 ) ∈ 𝑊 )
6 dimpropd.s2 ( ( 𝜑 ∧ ( 𝑥𝑃𝑦𝐵 ) ) → ( 𝑥 ( ·𝑠𝐾 ) 𝑦 ) = ( 𝑥 ( ·𝑠𝐿 ) 𝑦 ) )
7 dimpropd.f 𝐹 = ( Scalar ‘ 𝐾 )
8 dimpropd.g 𝐺 = ( Scalar ‘ 𝐿 )
9 dimpropd.p1 ( 𝜑𝑃 = ( Base ‘ 𝐹 ) )
10 dimpropd.p2 ( 𝜑𝑃 = ( Base ‘ 𝐺 ) )
11 dimpropd.a ( ( 𝜑 ∧ ( 𝑥𝑃𝑦𝑃 ) ) → ( 𝑥 ( +g𝐹 ) 𝑦 ) = ( 𝑥 ( +g𝐺 ) 𝑦 ) )
12 dimpropd.v1 ( 𝜑𝐾 ∈ LVec )
13 dimpropd.v2 ( 𝜑𝐿 ∈ LVec )
14 eqid ( LBasis ‘ 𝐾 ) = ( LBasis ‘ 𝐾 )
15 14 lbsex ( 𝐾 ∈ LVec → ( LBasis ‘ 𝐾 ) ≠ ∅ )
16 12 15 syl ( 𝜑 → ( LBasis ‘ 𝐾 ) ≠ ∅ )
17 n0 ( ( LBasis ‘ 𝐾 ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( LBasis ‘ 𝐾 ) )
18 16 17 sylib ( 𝜑 → ∃ 𝑥 𝑥 ∈ ( LBasis ‘ 𝐾 ) )
19 14 dimval ( ( 𝐾 ∈ LVec ∧ 𝑥 ∈ ( LBasis ‘ 𝐾 ) ) → ( dim ‘ 𝐾 ) = ( ♯ ‘ 𝑥 ) )
20 12 19 sylan ( ( 𝜑𝑥 ∈ ( LBasis ‘ 𝐾 ) ) → ( dim ‘ 𝐾 ) = ( ♯ ‘ 𝑥 ) )
21 1 2 3 4 5 6 7 8 9 10 11 12 13 lbspropd ( 𝜑 → ( LBasis ‘ 𝐾 ) = ( LBasis ‘ 𝐿 ) )
22 21 eleq2d ( 𝜑 → ( 𝑥 ∈ ( LBasis ‘ 𝐾 ) ↔ 𝑥 ∈ ( LBasis ‘ 𝐿 ) ) )
23 22 biimpa ( ( 𝜑𝑥 ∈ ( LBasis ‘ 𝐾 ) ) → 𝑥 ∈ ( LBasis ‘ 𝐿 ) )
24 eqid ( LBasis ‘ 𝐿 ) = ( LBasis ‘ 𝐿 )
25 24 dimval ( ( 𝐿 ∈ LVec ∧ 𝑥 ∈ ( LBasis ‘ 𝐿 ) ) → ( dim ‘ 𝐿 ) = ( ♯ ‘ 𝑥 ) )
26 13 23 25 syl2an2r ( ( 𝜑𝑥 ∈ ( LBasis ‘ 𝐾 ) ) → ( dim ‘ 𝐿 ) = ( ♯ ‘ 𝑥 ) )
27 20 26 eqtr4d ( ( 𝜑𝑥 ∈ ( LBasis ‘ 𝐾 ) ) → ( dim ‘ 𝐾 ) = ( dim ‘ 𝐿 ) )
28 18 27 exlimddv ( 𝜑 → ( dim ‘ 𝐾 ) = ( dim ‘ 𝐿 ) )