Step |
Hyp |
Ref |
Expression |
1 |
|
dimpropd.b1 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) |
2 |
|
dimpropd.b2 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) |
3 |
|
dimpropd.w |
⊢ ( 𝜑 → 𝐵 ⊆ 𝑊 ) |
4 |
|
dimpropd.p |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) |
5 |
|
dimpropd.s1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐾 ) 𝑦 ) ∈ 𝑊 ) |
6 |
|
dimpropd.s2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝐿 ) 𝑦 ) ) |
7 |
|
dimpropd.f |
⊢ 𝐹 = ( Scalar ‘ 𝐾 ) |
8 |
|
dimpropd.g |
⊢ 𝐺 = ( Scalar ‘ 𝐿 ) |
9 |
|
dimpropd.p1 |
⊢ ( 𝜑 → 𝑃 = ( Base ‘ 𝐹 ) ) |
10 |
|
dimpropd.p2 |
⊢ ( 𝜑 → 𝑃 = ( Base ‘ 𝐺 ) ) |
11 |
|
dimpropd.a |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ) → ( 𝑥 ( +g ‘ 𝐹 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) |
12 |
|
dimpropd.v1 |
⊢ ( 𝜑 → 𝐾 ∈ LVec ) |
13 |
|
dimpropd.v2 |
⊢ ( 𝜑 → 𝐿 ∈ LVec ) |
14 |
|
eqid |
⊢ ( LBasis ‘ 𝐾 ) = ( LBasis ‘ 𝐾 ) |
15 |
14
|
lbsex |
⊢ ( 𝐾 ∈ LVec → ( LBasis ‘ 𝐾 ) ≠ ∅ ) |
16 |
12 15
|
syl |
⊢ ( 𝜑 → ( LBasis ‘ 𝐾 ) ≠ ∅ ) |
17 |
|
n0 |
⊢ ( ( LBasis ‘ 𝐾 ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( LBasis ‘ 𝐾 ) ) |
18 |
16 17
|
sylib |
⊢ ( 𝜑 → ∃ 𝑥 𝑥 ∈ ( LBasis ‘ 𝐾 ) ) |
19 |
14
|
dimval |
⊢ ( ( 𝐾 ∈ LVec ∧ 𝑥 ∈ ( LBasis ‘ 𝐾 ) ) → ( dim ‘ 𝐾 ) = ( ♯ ‘ 𝑥 ) ) |
20 |
12 19
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐾 ) ) → ( dim ‘ 𝐾 ) = ( ♯ ‘ 𝑥 ) ) |
21 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
lbspropd |
⊢ ( 𝜑 → ( LBasis ‘ 𝐾 ) = ( LBasis ‘ 𝐿 ) ) |
22 |
21
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( LBasis ‘ 𝐾 ) ↔ 𝑥 ∈ ( LBasis ‘ 𝐿 ) ) ) |
23 |
22
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐾 ) ) → 𝑥 ∈ ( LBasis ‘ 𝐿 ) ) |
24 |
|
eqid |
⊢ ( LBasis ‘ 𝐿 ) = ( LBasis ‘ 𝐿 ) |
25 |
24
|
dimval |
⊢ ( ( 𝐿 ∈ LVec ∧ 𝑥 ∈ ( LBasis ‘ 𝐿 ) ) → ( dim ‘ 𝐿 ) = ( ♯ ‘ 𝑥 ) ) |
26 |
13 23 25
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐾 ) ) → ( dim ‘ 𝐿 ) = ( ♯ ‘ 𝑥 ) ) |
27 |
20 26
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( LBasis ‘ 𝐾 ) ) → ( dim ‘ 𝐾 ) = ( dim ‘ 𝐿 ) ) |
28 |
18 27
|
exlimddv |
⊢ ( 𝜑 → ( dim ‘ 𝐾 ) = ( dim ‘ 𝐿 ) ) |