Metamath Proof Explorer


Theorem dimpropd

Description: If two structures have the same components (properties), they have the same dimension. (Contributed by Thierry Arnoux, 18-May-2023)

Ref Expression
Hypotheses dimpropd.b1 φ B = Base K
dimpropd.b2 φ B = Base L
dimpropd.w φ B W
dimpropd.p φ x W y W x + K y = x + L y
dimpropd.s1 φ x P y B x K y W
dimpropd.s2 φ x P y B x K y = x L y
dimpropd.f F = Scalar K
dimpropd.g G = Scalar L
dimpropd.p1 φ P = Base F
dimpropd.p2 φ P = Base G
dimpropd.a φ x P y P x + F y = x + G y
dimpropd.v1 φ K LVec
dimpropd.v2 φ L LVec
Assertion dimpropd φ dim K = dim L

Proof

Step Hyp Ref Expression
1 dimpropd.b1 φ B = Base K
2 dimpropd.b2 φ B = Base L
3 dimpropd.w φ B W
4 dimpropd.p φ x W y W x + K y = x + L y
5 dimpropd.s1 φ x P y B x K y W
6 dimpropd.s2 φ x P y B x K y = x L y
7 dimpropd.f F = Scalar K
8 dimpropd.g G = Scalar L
9 dimpropd.p1 φ P = Base F
10 dimpropd.p2 φ P = Base G
11 dimpropd.a φ x P y P x + F y = x + G y
12 dimpropd.v1 φ K LVec
13 dimpropd.v2 φ L LVec
14 eqid LBasis K = LBasis K
15 14 lbsex K LVec LBasis K
16 12 15 syl φ LBasis K
17 n0 LBasis K x x LBasis K
18 16 17 sylib φ x x LBasis K
19 14 dimval K LVec x LBasis K dim K = x
20 12 19 sylan φ x LBasis K dim K = x
21 1 2 3 4 5 6 7 8 9 10 11 12 13 lbspropd φ LBasis K = LBasis L
22 21 eleq2d φ x LBasis K x LBasis L
23 22 biimpa φ x LBasis K x LBasis L
24 eqid LBasis L = LBasis L
25 24 dimval L LVec x LBasis L dim L = x
26 13 23 25 syl2an2r φ x LBasis K dim L = x
27 20 26 eqtr4d φ x LBasis K dim K = dim L
28 18 27 exlimddv φ dim K = dim L