Metamath Proof Explorer


Theorem rgmoddim

Description: The left vector space induced by a ring over itself has dimension 1. (Contributed by Thierry Arnoux, 5-Aug-2023)

Ref Expression
Hypothesis rgmoddim.1 V = ringLMod F
Assertion rgmoddim F Field dim V = 1

Proof

Step Hyp Ref Expression
1 rgmoddim.1 V = ringLMod F
2 isfld F Field F DivRing F CRing
3 2 simplbi F Field F DivRing
4 eqid Base F = Base F
5 4 ressid F Field F 𝑠 Base F = F
6 5 3 eqeltrd F Field F 𝑠 Base F DivRing
7 drngring F DivRing F Ring
8 4 subrgid F Ring Base F SubRing F
9 3 7 8 3syl F Field Base F SubRing F
10 rlmval ringLMod F = subringAlg F Base F
11 1 10 eqtri V = subringAlg F Base F
12 eqid F 𝑠 Base F = F 𝑠 Base F
13 11 12 sralvec F DivRing F 𝑠 Base F DivRing Base F SubRing F V LVec
14 3 6 9 13 syl3anc F Field V LVec
15 3 7 syl F Field F Ring
16 ssidd F Field Base F Base F
17 11 4 sraring F Ring Base F Base F V Ring
18 15 16 17 syl2anc F Field V Ring
19 eqid Base V = Base V
20 eqid 1 V = 1 V
21 19 20 ringidcl V Ring 1 V Base V
22 18 21 syl F Field 1 V Base V
23 11 4 sradrng F DivRing Base F Base F V DivRing
24 3 16 23 syl2anc F Field V DivRing
25 eqid 0 V = 0 V
26 25 20 drngunz V DivRing 1 V 0 V
27 24 26 syl F Field 1 V 0 V
28 19 25 lindssn V LVec 1 V Base V 1 V 0 V 1 V LIndS V
29 14 22 27 28 syl3anc F Field 1 V LIndS V
30 rspval RSpan F = LSpan ringLMod F
31 1 fveq2i LSpan V = LSpan ringLMod F
32 30 31 eqtr4i RSpan F = LSpan V
33 32 fveq1i RSpan F 1 F = LSpan V 1 F
34 eqid RSpan F = RSpan F
35 eqid 1 F = 1 F
36 34 4 35 rsp1 F Ring RSpan F 1 F = Base F
37 33 36 eqtr3id F Ring LSpan V 1 F = Base F
38 3 7 37 3syl F Field LSpan V 1 F = Base F
39 11 a1i F Field V = subringAlg F Base F
40 eqidd F Field 1 F = 1 F
41 39 40 16 sra1r F Field 1 F = 1 V
42 41 sneqd F Field 1 F = 1 V
43 42 fveq2d F Field LSpan V 1 F = LSpan V 1 V
44 39 16 srabase F Field Base F = Base V
45 38 43 44 3eqtr3d F Field LSpan V 1 V = Base V
46 eqid LBasis V = LBasis V
47 eqid LSpan V = LSpan V
48 19 46 47 islbs4 1 V LBasis V 1 V LIndS V LSpan V 1 V = Base V
49 29 45 48 sylanbrc F Field 1 V LBasis V
50 46 dimval V LVec 1 V LBasis V dim V = 1 V
51 14 49 50 syl2anc F Field dim V = 1 V
52 fvex 1 V V
53 hashsng 1 V V 1 V = 1
54 52 53 ax-mp 1 V = 1
55 51 54 eqtrdi F Field dim V = 1