Step |
Hyp |
Ref |
Expression |
1 |
|
rgmoddim.1 |
⊢ 𝑉 = ( ringLMod ‘ 𝐹 ) |
2 |
|
isfld |
⊢ ( 𝐹 ∈ Field ↔ ( 𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing ) ) |
3 |
2
|
simplbi |
⊢ ( 𝐹 ∈ Field → 𝐹 ∈ DivRing ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
5 |
4
|
ressid |
⊢ ( 𝐹 ∈ Field → ( 𝐹 ↾s ( Base ‘ 𝐹 ) ) = 𝐹 ) |
6 |
5 3
|
eqeltrd |
⊢ ( 𝐹 ∈ Field → ( 𝐹 ↾s ( Base ‘ 𝐹 ) ) ∈ DivRing ) |
7 |
|
drngring |
⊢ ( 𝐹 ∈ DivRing → 𝐹 ∈ Ring ) |
8 |
4
|
subrgid |
⊢ ( 𝐹 ∈ Ring → ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ 𝐹 ) ) |
9 |
3 7 8
|
3syl |
⊢ ( 𝐹 ∈ Field → ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ 𝐹 ) ) |
10 |
|
rlmval |
⊢ ( ringLMod ‘ 𝐹 ) = ( ( subringAlg ‘ 𝐹 ) ‘ ( Base ‘ 𝐹 ) ) |
11 |
1 10
|
eqtri |
⊢ 𝑉 = ( ( subringAlg ‘ 𝐹 ) ‘ ( Base ‘ 𝐹 ) ) |
12 |
|
eqid |
⊢ ( 𝐹 ↾s ( Base ‘ 𝐹 ) ) = ( 𝐹 ↾s ( Base ‘ 𝐹 ) ) |
13 |
11 12
|
sralvec |
⊢ ( ( 𝐹 ∈ DivRing ∧ ( 𝐹 ↾s ( Base ‘ 𝐹 ) ) ∈ DivRing ∧ ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ 𝐹 ) ) → 𝑉 ∈ LVec ) |
14 |
3 6 9 13
|
syl3anc |
⊢ ( 𝐹 ∈ Field → 𝑉 ∈ LVec ) |
15 |
3 7
|
syl |
⊢ ( 𝐹 ∈ Field → 𝐹 ∈ Ring ) |
16 |
|
ssidd |
⊢ ( 𝐹 ∈ Field → ( Base ‘ 𝐹 ) ⊆ ( Base ‘ 𝐹 ) ) |
17 |
11 4
|
sraring |
⊢ ( ( 𝐹 ∈ Ring ∧ ( Base ‘ 𝐹 ) ⊆ ( Base ‘ 𝐹 ) ) → 𝑉 ∈ Ring ) |
18 |
15 16 17
|
syl2anc |
⊢ ( 𝐹 ∈ Field → 𝑉 ∈ Ring ) |
19 |
|
eqid |
⊢ ( Base ‘ 𝑉 ) = ( Base ‘ 𝑉 ) |
20 |
|
eqid |
⊢ ( 1r ‘ 𝑉 ) = ( 1r ‘ 𝑉 ) |
21 |
19 20
|
ringidcl |
⊢ ( 𝑉 ∈ Ring → ( 1r ‘ 𝑉 ) ∈ ( Base ‘ 𝑉 ) ) |
22 |
18 21
|
syl |
⊢ ( 𝐹 ∈ Field → ( 1r ‘ 𝑉 ) ∈ ( Base ‘ 𝑉 ) ) |
23 |
11 4
|
sradrng |
⊢ ( ( 𝐹 ∈ DivRing ∧ ( Base ‘ 𝐹 ) ⊆ ( Base ‘ 𝐹 ) ) → 𝑉 ∈ DivRing ) |
24 |
3 16 23
|
syl2anc |
⊢ ( 𝐹 ∈ Field → 𝑉 ∈ DivRing ) |
25 |
|
eqid |
⊢ ( 0g ‘ 𝑉 ) = ( 0g ‘ 𝑉 ) |
26 |
25 20
|
drngunz |
⊢ ( 𝑉 ∈ DivRing → ( 1r ‘ 𝑉 ) ≠ ( 0g ‘ 𝑉 ) ) |
27 |
24 26
|
syl |
⊢ ( 𝐹 ∈ Field → ( 1r ‘ 𝑉 ) ≠ ( 0g ‘ 𝑉 ) ) |
28 |
19 25
|
lindssn |
⊢ ( ( 𝑉 ∈ LVec ∧ ( 1r ‘ 𝑉 ) ∈ ( Base ‘ 𝑉 ) ∧ ( 1r ‘ 𝑉 ) ≠ ( 0g ‘ 𝑉 ) ) → { ( 1r ‘ 𝑉 ) } ∈ ( LIndS ‘ 𝑉 ) ) |
29 |
14 22 27 28
|
syl3anc |
⊢ ( 𝐹 ∈ Field → { ( 1r ‘ 𝑉 ) } ∈ ( LIndS ‘ 𝑉 ) ) |
30 |
|
rspval |
⊢ ( RSpan ‘ 𝐹 ) = ( LSpan ‘ ( ringLMod ‘ 𝐹 ) ) |
31 |
1
|
fveq2i |
⊢ ( LSpan ‘ 𝑉 ) = ( LSpan ‘ ( ringLMod ‘ 𝐹 ) ) |
32 |
30 31
|
eqtr4i |
⊢ ( RSpan ‘ 𝐹 ) = ( LSpan ‘ 𝑉 ) |
33 |
32
|
fveq1i |
⊢ ( ( RSpan ‘ 𝐹 ) ‘ { ( 1r ‘ 𝐹 ) } ) = ( ( LSpan ‘ 𝑉 ) ‘ { ( 1r ‘ 𝐹 ) } ) |
34 |
|
eqid |
⊢ ( RSpan ‘ 𝐹 ) = ( RSpan ‘ 𝐹 ) |
35 |
|
eqid |
⊢ ( 1r ‘ 𝐹 ) = ( 1r ‘ 𝐹 ) |
36 |
34 4 35
|
rsp1 |
⊢ ( 𝐹 ∈ Ring → ( ( RSpan ‘ 𝐹 ) ‘ { ( 1r ‘ 𝐹 ) } ) = ( Base ‘ 𝐹 ) ) |
37 |
33 36
|
eqtr3id |
⊢ ( 𝐹 ∈ Ring → ( ( LSpan ‘ 𝑉 ) ‘ { ( 1r ‘ 𝐹 ) } ) = ( Base ‘ 𝐹 ) ) |
38 |
3 7 37
|
3syl |
⊢ ( 𝐹 ∈ Field → ( ( LSpan ‘ 𝑉 ) ‘ { ( 1r ‘ 𝐹 ) } ) = ( Base ‘ 𝐹 ) ) |
39 |
11
|
a1i |
⊢ ( 𝐹 ∈ Field → 𝑉 = ( ( subringAlg ‘ 𝐹 ) ‘ ( Base ‘ 𝐹 ) ) ) |
40 |
|
eqidd |
⊢ ( 𝐹 ∈ Field → ( 1r ‘ 𝐹 ) = ( 1r ‘ 𝐹 ) ) |
41 |
39 40 16
|
sra1r |
⊢ ( 𝐹 ∈ Field → ( 1r ‘ 𝐹 ) = ( 1r ‘ 𝑉 ) ) |
42 |
41
|
sneqd |
⊢ ( 𝐹 ∈ Field → { ( 1r ‘ 𝐹 ) } = { ( 1r ‘ 𝑉 ) } ) |
43 |
42
|
fveq2d |
⊢ ( 𝐹 ∈ Field → ( ( LSpan ‘ 𝑉 ) ‘ { ( 1r ‘ 𝐹 ) } ) = ( ( LSpan ‘ 𝑉 ) ‘ { ( 1r ‘ 𝑉 ) } ) ) |
44 |
39 16
|
srabase |
⊢ ( 𝐹 ∈ Field → ( Base ‘ 𝐹 ) = ( Base ‘ 𝑉 ) ) |
45 |
38 43 44
|
3eqtr3d |
⊢ ( 𝐹 ∈ Field → ( ( LSpan ‘ 𝑉 ) ‘ { ( 1r ‘ 𝑉 ) } ) = ( Base ‘ 𝑉 ) ) |
46 |
|
eqid |
⊢ ( LBasis ‘ 𝑉 ) = ( LBasis ‘ 𝑉 ) |
47 |
|
eqid |
⊢ ( LSpan ‘ 𝑉 ) = ( LSpan ‘ 𝑉 ) |
48 |
19 46 47
|
islbs4 |
⊢ ( { ( 1r ‘ 𝑉 ) } ∈ ( LBasis ‘ 𝑉 ) ↔ ( { ( 1r ‘ 𝑉 ) } ∈ ( LIndS ‘ 𝑉 ) ∧ ( ( LSpan ‘ 𝑉 ) ‘ { ( 1r ‘ 𝑉 ) } ) = ( Base ‘ 𝑉 ) ) ) |
49 |
29 45 48
|
sylanbrc |
⊢ ( 𝐹 ∈ Field → { ( 1r ‘ 𝑉 ) } ∈ ( LBasis ‘ 𝑉 ) ) |
50 |
46
|
dimval |
⊢ ( ( 𝑉 ∈ LVec ∧ { ( 1r ‘ 𝑉 ) } ∈ ( LBasis ‘ 𝑉 ) ) → ( dim ‘ 𝑉 ) = ( ♯ ‘ { ( 1r ‘ 𝑉 ) } ) ) |
51 |
14 49 50
|
syl2anc |
⊢ ( 𝐹 ∈ Field → ( dim ‘ 𝑉 ) = ( ♯ ‘ { ( 1r ‘ 𝑉 ) } ) ) |
52 |
|
fvex |
⊢ ( 1r ‘ 𝑉 ) ∈ V |
53 |
|
hashsng |
⊢ ( ( 1r ‘ 𝑉 ) ∈ V → ( ♯ ‘ { ( 1r ‘ 𝑉 ) } ) = 1 ) |
54 |
52 53
|
ax-mp |
⊢ ( ♯ ‘ { ( 1r ‘ 𝑉 ) } ) = 1 |
55 |
51 54
|
eqtrdi |
⊢ ( 𝐹 ∈ Field → ( dim ‘ 𝑉 ) = 1 ) |