Metamath Proof Explorer


Theorem rgmoddim

Description: The left vector space induced by a ring over itself has dimension 1. (Contributed by Thierry Arnoux, 5-Aug-2023)

Ref Expression
Hypothesis rgmoddim.1 𝑉 = ( ringLMod ‘ 𝐹 )
Assertion rgmoddim ( 𝐹 ∈ Field → ( dim ‘ 𝑉 ) = 1 )

Proof

Step Hyp Ref Expression
1 rgmoddim.1 𝑉 = ( ringLMod ‘ 𝐹 )
2 isfld ( 𝐹 ∈ Field ↔ ( 𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing ) )
3 2 simplbi ( 𝐹 ∈ Field → 𝐹 ∈ DivRing )
4 eqid ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 )
5 4 ressid ( 𝐹 ∈ Field → ( 𝐹s ( Base ‘ 𝐹 ) ) = 𝐹 )
6 5 3 eqeltrd ( 𝐹 ∈ Field → ( 𝐹s ( Base ‘ 𝐹 ) ) ∈ DivRing )
7 drngring ( 𝐹 ∈ DivRing → 𝐹 ∈ Ring )
8 4 subrgid ( 𝐹 ∈ Ring → ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ 𝐹 ) )
9 3 7 8 3syl ( 𝐹 ∈ Field → ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ 𝐹 ) )
10 rlmval ( ringLMod ‘ 𝐹 ) = ( ( subringAlg ‘ 𝐹 ) ‘ ( Base ‘ 𝐹 ) )
11 1 10 eqtri 𝑉 = ( ( subringAlg ‘ 𝐹 ) ‘ ( Base ‘ 𝐹 ) )
12 eqid ( 𝐹s ( Base ‘ 𝐹 ) ) = ( 𝐹s ( Base ‘ 𝐹 ) )
13 11 12 sralvec ( ( 𝐹 ∈ DivRing ∧ ( 𝐹s ( Base ‘ 𝐹 ) ) ∈ DivRing ∧ ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ 𝐹 ) ) → 𝑉 ∈ LVec )
14 3 6 9 13 syl3anc ( 𝐹 ∈ Field → 𝑉 ∈ LVec )
15 3 7 syl ( 𝐹 ∈ Field → 𝐹 ∈ Ring )
16 ssidd ( 𝐹 ∈ Field → ( Base ‘ 𝐹 ) ⊆ ( Base ‘ 𝐹 ) )
17 11 4 sraring ( ( 𝐹 ∈ Ring ∧ ( Base ‘ 𝐹 ) ⊆ ( Base ‘ 𝐹 ) ) → 𝑉 ∈ Ring )
18 15 16 17 syl2anc ( 𝐹 ∈ Field → 𝑉 ∈ Ring )
19 eqid ( Base ‘ 𝑉 ) = ( Base ‘ 𝑉 )
20 eqid ( 1r𝑉 ) = ( 1r𝑉 )
21 19 20 ringidcl ( 𝑉 ∈ Ring → ( 1r𝑉 ) ∈ ( Base ‘ 𝑉 ) )
22 18 21 syl ( 𝐹 ∈ Field → ( 1r𝑉 ) ∈ ( Base ‘ 𝑉 ) )
23 11 4 sradrng ( ( 𝐹 ∈ DivRing ∧ ( Base ‘ 𝐹 ) ⊆ ( Base ‘ 𝐹 ) ) → 𝑉 ∈ DivRing )
24 3 16 23 syl2anc ( 𝐹 ∈ Field → 𝑉 ∈ DivRing )
25 eqid ( 0g𝑉 ) = ( 0g𝑉 )
26 25 20 drngunz ( 𝑉 ∈ DivRing → ( 1r𝑉 ) ≠ ( 0g𝑉 ) )
27 24 26 syl ( 𝐹 ∈ Field → ( 1r𝑉 ) ≠ ( 0g𝑉 ) )
28 19 25 lindssn ( ( 𝑉 ∈ LVec ∧ ( 1r𝑉 ) ∈ ( Base ‘ 𝑉 ) ∧ ( 1r𝑉 ) ≠ ( 0g𝑉 ) ) → { ( 1r𝑉 ) } ∈ ( LIndS ‘ 𝑉 ) )
29 14 22 27 28 syl3anc ( 𝐹 ∈ Field → { ( 1r𝑉 ) } ∈ ( LIndS ‘ 𝑉 ) )
30 rspval ( RSpan ‘ 𝐹 ) = ( LSpan ‘ ( ringLMod ‘ 𝐹 ) )
31 1 fveq2i ( LSpan ‘ 𝑉 ) = ( LSpan ‘ ( ringLMod ‘ 𝐹 ) )
32 30 31 eqtr4i ( RSpan ‘ 𝐹 ) = ( LSpan ‘ 𝑉 )
33 32 fveq1i ( ( RSpan ‘ 𝐹 ) ‘ { ( 1r𝐹 ) } ) = ( ( LSpan ‘ 𝑉 ) ‘ { ( 1r𝐹 ) } )
34 eqid ( RSpan ‘ 𝐹 ) = ( RSpan ‘ 𝐹 )
35 eqid ( 1r𝐹 ) = ( 1r𝐹 )
36 34 4 35 rsp1 ( 𝐹 ∈ Ring → ( ( RSpan ‘ 𝐹 ) ‘ { ( 1r𝐹 ) } ) = ( Base ‘ 𝐹 ) )
37 33 36 eqtr3id ( 𝐹 ∈ Ring → ( ( LSpan ‘ 𝑉 ) ‘ { ( 1r𝐹 ) } ) = ( Base ‘ 𝐹 ) )
38 3 7 37 3syl ( 𝐹 ∈ Field → ( ( LSpan ‘ 𝑉 ) ‘ { ( 1r𝐹 ) } ) = ( Base ‘ 𝐹 ) )
39 11 a1i ( 𝐹 ∈ Field → 𝑉 = ( ( subringAlg ‘ 𝐹 ) ‘ ( Base ‘ 𝐹 ) ) )
40 eqidd ( 𝐹 ∈ Field → ( 1r𝐹 ) = ( 1r𝐹 ) )
41 39 40 16 sra1r ( 𝐹 ∈ Field → ( 1r𝐹 ) = ( 1r𝑉 ) )
42 41 sneqd ( 𝐹 ∈ Field → { ( 1r𝐹 ) } = { ( 1r𝑉 ) } )
43 42 fveq2d ( 𝐹 ∈ Field → ( ( LSpan ‘ 𝑉 ) ‘ { ( 1r𝐹 ) } ) = ( ( LSpan ‘ 𝑉 ) ‘ { ( 1r𝑉 ) } ) )
44 39 16 srabase ( 𝐹 ∈ Field → ( Base ‘ 𝐹 ) = ( Base ‘ 𝑉 ) )
45 38 43 44 3eqtr3d ( 𝐹 ∈ Field → ( ( LSpan ‘ 𝑉 ) ‘ { ( 1r𝑉 ) } ) = ( Base ‘ 𝑉 ) )
46 eqid ( LBasis ‘ 𝑉 ) = ( LBasis ‘ 𝑉 )
47 eqid ( LSpan ‘ 𝑉 ) = ( LSpan ‘ 𝑉 )
48 19 46 47 islbs4 ( { ( 1r𝑉 ) } ∈ ( LBasis ‘ 𝑉 ) ↔ ( { ( 1r𝑉 ) } ∈ ( LIndS ‘ 𝑉 ) ∧ ( ( LSpan ‘ 𝑉 ) ‘ { ( 1r𝑉 ) } ) = ( Base ‘ 𝑉 ) ) )
49 29 45 48 sylanbrc ( 𝐹 ∈ Field → { ( 1r𝑉 ) } ∈ ( LBasis ‘ 𝑉 ) )
50 46 dimval ( ( 𝑉 ∈ LVec ∧ { ( 1r𝑉 ) } ∈ ( LBasis ‘ 𝑉 ) ) → ( dim ‘ 𝑉 ) = ( ♯ ‘ { ( 1r𝑉 ) } ) )
51 14 49 50 syl2anc ( 𝐹 ∈ Field → ( dim ‘ 𝑉 ) = ( ♯ ‘ { ( 1r𝑉 ) } ) )
52 fvex ( 1r𝑉 ) ∈ V
53 hashsng ( ( 1r𝑉 ) ∈ V → ( ♯ ‘ { ( 1r𝑉 ) } ) = 1 )
54 52 53 ax-mp ( ♯ ‘ { ( 1r𝑉 ) } ) = 1
55 51 54 eqtrdi ( 𝐹 ∈ Field → ( dim ‘ 𝑉 ) = 1 )