Step |
Hyp |
Ref |
Expression |
1 |
|
lindssn.1 |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
2 |
|
lindssn.2 |
⊢ 0 = ( 0g ‘ 𝑊 ) |
3 |
|
simp1 |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → 𝑊 ∈ LVec ) |
4 |
|
snssi |
⊢ ( 𝑋 ∈ 𝐵 → { 𝑋 } ⊆ 𝐵 ) |
5 |
4
|
3ad2ant2 |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → { 𝑋 } ⊆ 𝐵 ) |
6 |
|
simpr |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) → 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) |
7 |
|
eldifsni |
⊢ ( 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) → 𝑦 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
8 |
6 7
|
syl |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) → 𝑦 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
9 |
8
|
neneqd |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) → ¬ 𝑦 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
10 |
|
simpl3 |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) → 𝑋 ≠ 0 ) |
11 |
10
|
neneqd |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) → ¬ 𝑋 = 0 ) |
12 |
|
ioran |
⊢ ( ¬ ( 𝑦 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ∨ 𝑋 = 0 ) ↔ ( ¬ 𝑦 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ∧ ¬ 𝑋 = 0 ) ) |
13 |
9 11 12
|
sylanbrc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) → ¬ ( 𝑦 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ∨ 𝑋 = 0 ) ) |
14 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
15 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
16 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
17 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) |
18 |
3
|
adantr |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) → 𝑊 ∈ LVec ) |
19 |
6
|
eldifad |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) → 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
20 |
|
simpl2 |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) → 𝑋 ∈ 𝐵 ) |
21 |
1 14 15 16 17 2 18 19 20
|
lvecvs0or |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) → ( ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) = 0 ↔ ( 𝑦 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ∨ 𝑋 = 0 ) ) ) |
22 |
21
|
necon3abid |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) → ( ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ≠ 0 ↔ ¬ ( 𝑦 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ∨ 𝑋 = 0 ) ) ) |
23 |
13 22
|
mpbird |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) → ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ≠ 0 ) |
24 |
|
nelsn |
⊢ ( ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ≠ 0 → ¬ ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ∈ { 0 } ) |
25 |
23 24
|
syl |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) → ¬ ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ∈ { 0 } ) |
26 |
|
difid |
⊢ ( { 𝑋 } ∖ { 𝑋 } ) = ∅ |
27 |
26
|
a1i |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) → ( { 𝑋 } ∖ { 𝑋 } ) = ∅ ) |
28 |
27
|
fveq2d |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) → ( ( LSpan ‘ 𝑊 ) ‘ ( { 𝑋 } ∖ { 𝑋 } ) ) = ( ( LSpan ‘ 𝑊 ) ‘ ∅ ) ) |
29 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
30 |
|
eqid |
⊢ ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 ) |
31 |
2 30
|
lsp0 |
⊢ ( 𝑊 ∈ LMod → ( ( LSpan ‘ 𝑊 ) ‘ ∅ ) = { 0 } ) |
32 |
3 29 31
|
3syl |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ( ( LSpan ‘ 𝑊 ) ‘ ∅ ) = { 0 } ) |
33 |
32
|
adantr |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) → ( ( LSpan ‘ 𝑊 ) ‘ ∅ ) = { 0 } ) |
34 |
28 33
|
eqtrd |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) → ( ( LSpan ‘ 𝑊 ) ‘ ( { 𝑋 } ∖ { 𝑋 } ) ) = { 0 } ) |
35 |
25 34
|
neleqtrrd |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) → ¬ ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( { 𝑋 } ∖ { 𝑋 } ) ) ) |
36 |
35
|
ralrimiva |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ∀ 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( { 𝑋 } ∖ { 𝑋 } ) ) ) |
37 |
|
oveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) = ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) |
38 |
|
sneq |
⊢ ( 𝑥 = 𝑋 → { 𝑥 } = { 𝑋 } ) |
39 |
38
|
difeq2d |
⊢ ( 𝑥 = 𝑋 → ( { 𝑋 } ∖ { 𝑥 } ) = ( { 𝑋 } ∖ { 𝑋 } ) ) |
40 |
39
|
fveq2d |
⊢ ( 𝑥 = 𝑋 → ( ( LSpan ‘ 𝑊 ) ‘ ( { 𝑋 } ∖ { 𝑥 } ) ) = ( ( LSpan ‘ 𝑊 ) ‘ ( { 𝑋 } ∖ { 𝑋 } ) ) ) |
41 |
37 40
|
eleq12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( { 𝑋 } ∖ { 𝑥 } ) ) ↔ ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( { 𝑋 } ∖ { 𝑋 } ) ) ) ) |
42 |
41
|
notbid |
⊢ ( 𝑥 = 𝑋 → ( ¬ ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( { 𝑋 } ∖ { 𝑥 } ) ) ↔ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( { 𝑋 } ∖ { 𝑋 } ) ) ) ) |
43 |
42
|
ralbidv |
⊢ ( 𝑥 = 𝑋 → ( ∀ 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( { 𝑋 } ∖ { 𝑥 } ) ) ↔ ∀ 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( { 𝑋 } ∖ { 𝑋 } ) ) ) ) |
44 |
43
|
ralsng |
⊢ ( 𝑋 ∈ 𝐵 → ( ∀ 𝑥 ∈ { 𝑋 } ∀ 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( { 𝑋 } ∖ { 𝑥 } ) ) ↔ ∀ 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( { 𝑋 } ∖ { 𝑋 } ) ) ) ) |
45 |
44
|
3ad2ant2 |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ( ∀ 𝑥 ∈ { 𝑋 } ∀ 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( { 𝑋 } ∖ { 𝑥 } ) ) ↔ ∀ 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( { 𝑋 } ∖ { 𝑋 } ) ) ) ) |
46 |
36 45
|
mpbird |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ∀ 𝑥 ∈ { 𝑋 } ∀ 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( { 𝑋 } ∖ { 𝑥 } ) ) ) |
47 |
1 14 30 15 16 17
|
islinds2 |
⊢ ( 𝑊 ∈ LVec → ( { 𝑋 } ∈ ( LIndS ‘ 𝑊 ) ↔ ( { 𝑋 } ⊆ 𝐵 ∧ ∀ 𝑥 ∈ { 𝑋 } ∀ 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( { 𝑋 } ∖ { 𝑥 } ) ) ) ) ) |
48 |
47
|
biimpar |
⊢ ( ( 𝑊 ∈ LVec ∧ ( { 𝑋 } ⊆ 𝐵 ∧ ∀ 𝑥 ∈ { 𝑋 } ∀ 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( { 𝑋 } ∖ { 𝑥 } ) ) ) ) → { 𝑋 } ∈ ( LIndS ‘ 𝑊 ) ) |
49 |
3 5 46 48
|
syl12anc |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → { 𝑋 } ∈ ( LIndS ‘ 𝑊 ) ) |