Metamath Proof Explorer


Theorem lindflbs

Description: Conditions for an independent family to be a basis. (Contributed by Thierry Arnoux, 21-Jul-2023)

Ref Expression
Hypotheses lindflbs.b 𝐵 = ( Base ‘ 𝑊 )
lindflbs.k 𝐾 = ( Base ‘ 𝐹 )
lindflbs.r 𝑆 = ( Scalar ‘ 𝑊 )
lindflbs.t · = ( ·𝑠𝑊 )
lindflbs.z 𝑂 = ( 0g𝑊 )
lindflbs.y 0 = ( 0g𝑆 )
lindflbs.n 𝑁 = ( LSpan ‘ 𝑊 )
lindflbs.1 ( 𝜑𝑊 ∈ LMod )
lindflbs.2 ( 𝜑𝑆 ∈ NzRing )
lindflbs.3 ( 𝜑𝐼𝑉 )
lindflbs.4 ( 𝜑𝐹 : 𝐼1-1𝐵 )
Assertion lindflbs ( 𝜑 → ( ran 𝐹 ∈ ( LBasis ‘ 𝑊 ) ↔ ( 𝐹 LIndF 𝑊 ∧ ( 𝑁 ‘ ran 𝐹 ) = 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 lindflbs.b 𝐵 = ( Base ‘ 𝑊 )
2 lindflbs.k 𝐾 = ( Base ‘ 𝐹 )
3 lindflbs.r 𝑆 = ( Scalar ‘ 𝑊 )
4 lindflbs.t · = ( ·𝑠𝑊 )
5 lindflbs.z 𝑂 = ( 0g𝑊 )
6 lindflbs.y 0 = ( 0g𝑆 )
7 lindflbs.n 𝑁 = ( LSpan ‘ 𝑊 )
8 lindflbs.1 ( 𝜑𝑊 ∈ LMod )
9 lindflbs.2 ( 𝜑𝑆 ∈ NzRing )
10 lindflbs.3 ( 𝜑𝐼𝑉 )
11 lindflbs.4 ( 𝜑𝐹 : 𝐼1-1𝐵 )
12 eqid ( LBasis ‘ 𝑊 ) = ( LBasis ‘ 𝑊 )
13 1 12 7 islbs4 ( ran 𝐹 ∈ ( LBasis ‘ 𝑊 ) ↔ ( ran 𝐹 ∈ ( LIndS ‘ 𝑊 ) ∧ ( 𝑁 ‘ ran 𝐹 ) = 𝐵 ) )
14 ssv ran 𝐹 ⊆ V
15 f1ssr ( ( 𝐹 : 𝐼1-1𝐵 ∧ ran 𝐹 ⊆ V ) → 𝐹 : 𝐼1-1→ V )
16 11 14 15 sylancl ( 𝜑𝐹 : 𝐼1-1→ V )
17 f1dm ( 𝐹 : 𝐼1-1𝐵 → dom 𝐹 = 𝐼 )
18 f1eq2 ( dom 𝐹 = 𝐼 → ( 𝐹 : dom 𝐹1-1→ V ↔ 𝐹 : 𝐼1-1→ V ) )
19 11 17 18 3syl ( 𝜑 → ( 𝐹 : dom 𝐹1-1→ V ↔ 𝐹 : 𝐼1-1→ V ) )
20 16 19 mpbird ( 𝜑𝐹 : dom 𝐹1-1→ V )
21 3 islindf3 ( ( 𝑊 ∈ LMod ∧ 𝑆 ∈ NzRing ) → ( 𝐹 LIndF 𝑊 ↔ ( 𝐹 : dom 𝐹1-1→ V ∧ ran 𝐹 ∈ ( LIndS ‘ 𝑊 ) ) ) )
22 8 9 21 syl2anc ( 𝜑 → ( 𝐹 LIndF 𝑊 ↔ ( 𝐹 : dom 𝐹1-1→ V ∧ ran 𝐹 ∈ ( LIndS ‘ 𝑊 ) ) ) )
23 20 22 mpbirand ( 𝜑 → ( 𝐹 LIndF 𝑊 ↔ ran 𝐹 ∈ ( LIndS ‘ 𝑊 ) ) )
24 23 anbi1d ( 𝜑 → ( ( 𝐹 LIndF 𝑊 ∧ ( 𝑁 ‘ ran 𝐹 ) = 𝐵 ) ↔ ( ran 𝐹 ∈ ( LIndS ‘ 𝑊 ) ∧ ( 𝑁 ‘ ran 𝐹 ) = 𝐵 ) ) )
25 13 24 bitr4id ( 𝜑 → ( ran 𝐹 ∈ ( LBasis ‘ 𝑊 ) ↔ ( 𝐹 LIndF 𝑊 ∧ ( 𝑁 ‘ ran 𝐹 ) = 𝐵 ) ) )