Step |
Hyp |
Ref |
Expression |
1 |
|
lindflbs.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
2 |
|
lindflbs.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
3 |
|
lindflbs.r |
⊢ 𝑆 = ( Scalar ‘ 𝑊 ) |
4 |
|
lindflbs.t |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
5 |
|
lindflbs.z |
⊢ 𝑂 = ( 0g ‘ 𝑊 ) |
6 |
|
lindflbs.y |
⊢ 0 = ( 0g ‘ 𝑆 ) |
7 |
|
lindflbs.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
8 |
|
lindflbs.1 |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
9 |
|
lindflbs.2 |
⊢ ( 𝜑 → 𝑆 ∈ NzRing ) |
10 |
|
lindflbs.3 |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
11 |
|
lindflbs.4 |
⊢ ( 𝜑 → 𝐹 : 𝐼 –1-1→ 𝐵 ) |
12 |
|
eqid |
⊢ ( LBasis ‘ 𝑊 ) = ( LBasis ‘ 𝑊 ) |
13 |
1 12 7
|
islbs4 |
⊢ ( ran 𝐹 ∈ ( LBasis ‘ 𝑊 ) ↔ ( ran 𝐹 ∈ ( LIndS ‘ 𝑊 ) ∧ ( 𝑁 ‘ ran 𝐹 ) = 𝐵 ) ) |
14 |
|
ssv |
⊢ ran 𝐹 ⊆ V |
15 |
|
f1ssr |
⊢ ( ( 𝐹 : 𝐼 –1-1→ 𝐵 ∧ ran 𝐹 ⊆ V ) → 𝐹 : 𝐼 –1-1→ V ) |
16 |
11 14 15
|
sylancl |
⊢ ( 𝜑 → 𝐹 : 𝐼 –1-1→ V ) |
17 |
|
f1dm |
⊢ ( 𝐹 : 𝐼 –1-1→ 𝐵 → dom 𝐹 = 𝐼 ) |
18 |
|
f1eq2 |
⊢ ( dom 𝐹 = 𝐼 → ( 𝐹 : dom 𝐹 –1-1→ V ↔ 𝐹 : 𝐼 –1-1→ V ) ) |
19 |
11 17 18
|
3syl |
⊢ ( 𝜑 → ( 𝐹 : dom 𝐹 –1-1→ V ↔ 𝐹 : 𝐼 –1-1→ V ) ) |
20 |
16 19
|
mpbird |
⊢ ( 𝜑 → 𝐹 : dom 𝐹 –1-1→ V ) |
21 |
3
|
islindf3 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑆 ∈ NzRing ) → ( 𝐹 LIndF 𝑊 ↔ ( 𝐹 : dom 𝐹 –1-1→ V ∧ ran 𝐹 ∈ ( LIndS ‘ 𝑊 ) ) ) ) |
22 |
8 9 21
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 LIndF 𝑊 ↔ ( 𝐹 : dom 𝐹 –1-1→ V ∧ ran 𝐹 ∈ ( LIndS ‘ 𝑊 ) ) ) ) |
23 |
20 22
|
mpbirand |
⊢ ( 𝜑 → ( 𝐹 LIndF 𝑊 ↔ ran 𝐹 ∈ ( LIndS ‘ 𝑊 ) ) ) |
24 |
23
|
anbi1d |
⊢ ( 𝜑 → ( ( 𝐹 LIndF 𝑊 ∧ ( 𝑁 ‘ ran 𝐹 ) = 𝐵 ) ↔ ( ran 𝐹 ∈ ( LIndS ‘ 𝑊 ) ∧ ( 𝑁 ‘ ran 𝐹 ) = 𝐵 ) ) ) |
25 |
13 24
|
bitr4id |
⊢ ( 𝜑 → ( ran 𝐹 ∈ ( LBasis ‘ 𝑊 ) ↔ ( 𝐹 LIndF 𝑊 ∧ ( 𝑁 ‘ ran 𝐹 ) = 𝐵 ) ) ) |