Metamath Proof Explorer


Theorem linds2eq

Description: Deduce equality of elements in an independent set. (Contributed by Thierry Arnoux, 18-Jul-2023)

Ref Expression
Hypotheses linds2eq.1 𝐹 = ( Base ‘ ( Scalar ‘ 𝑊 ) )
linds2eq.2 · = ( ·𝑠𝑊 )
linds2eq.3 + = ( +g𝑊 )
linds2eq.4 0 = ( 0g ‘ ( Scalar ‘ 𝑊 ) )
linds2eq.5 ( 𝜑𝑊 ∈ LVec )
linds2eq.6 ( 𝜑𝐵 ∈ ( LIndS ‘ 𝑊 ) )
linds2eq.7 ( 𝜑𝑋𝐵 )
linds2eq.8 ( 𝜑𝑌𝐵 )
linds2eq.9 ( 𝜑𝐾𝐹 )
linds2eq.10 ( 𝜑𝐿𝐹 )
linds2eq.11 ( 𝜑𝐾0 )
linds2eq.12 ( 𝜑 → ( 𝐾 · 𝑋 ) = ( 𝐿 · 𝑌 ) )
Assertion linds2eq ( 𝜑 → ( 𝑋 = 𝑌𝐾 = 𝐿 ) )

Proof

Step Hyp Ref Expression
1 linds2eq.1 𝐹 = ( Base ‘ ( Scalar ‘ 𝑊 ) )
2 linds2eq.2 · = ( ·𝑠𝑊 )
3 linds2eq.3 + = ( +g𝑊 )
4 linds2eq.4 0 = ( 0g ‘ ( Scalar ‘ 𝑊 ) )
5 linds2eq.5 ( 𝜑𝑊 ∈ LVec )
6 linds2eq.6 ( 𝜑𝐵 ∈ ( LIndS ‘ 𝑊 ) )
7 linds2eq.7 ( 𝜑𝑋𝐵 )
8 linds2eq.8 ( 𝜑𝑌𝐵 )
9 linds2eq.9 ( 𝜑𝐾𝐹 )
10 linds2eq.10 ( 𝜑𝐿𝐹 )
11 linds2eq.11 ( 𝜑𝐾0 )
12 linds2eq.12 ( 𝜑 → ( 𝐾 · 𝑋 ) = ( 𝐿 · 𝑌 ) )
13 simpr ( ( 𝜑𝑋 = 𝑌 ) → 𝑋 = 𝑌 )
14 12 adantr ( ( 𝜑𝑋 = 𝑌 ) → ( 𝐾 · 𝑋 ) = ( 𝐿 · 𝑌 ) )
15 13 oveq2d ( ( 𝜑𝑋 = 𝑌 ) → ( 𝐿 · 𝑋 ) = ( 𝐿 · 𝑌 ) )
16 14 15 eqtr4d ( ( 𝜑𝑋 = 𝑌 ) → ( 𝐾 · 𝑋 ) = ( 𝐿 · 𝑋 ) )
17 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
18 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
19 eqid ( 0g𝑊 ) = ( 0g𝑊 )
20 5 adantr ( ( 𝜑𝑋 = 𝑌 ) → 𝑊 ∈ LVec )
21 9 adantr ( ( 𝜑𝑋 = 𝑌 ) → 𝐾𝐹 )
22 10 adantr ( ( 𝜑𝑋 = 𝑌 ) → 𝐿𝐹 )
23 17 linds1 ( 𝐵 ∈ ( LIndS ‘ 𝑊 ) → 𝐵 ⊆ ( Base ‘ 𝑊 ) )
24 6 23 syl ( 𝜑𝐵 ⊆ ( Base ‘ 𝑊 ) )
25 24 7 sseldd ( 𝜑𝑋 ∈ ( Base ‘ 𝑊 ) )
26 25 adantr ( ( 𝜑𝑋 = 𝑌 ) → 𝑋 ∈ ( Base ‘ 𝑊 ) )
27 19 0nellinds ( ( 𝑊 ∈ LVec ∧ 𝐵 ∈ ( LIndS ‘ 𝑊 ) ) → ¬ ( 0g𝑊 ) ∈ 𝐵 )
28 5 6 27 syl2anc ( 𝜑 → ¬ ( 0g𝑊 ) ∈ 𝐵 )
29 nelne2 ( ( 𝑋𝐵 ∧ ¬ ( 0g𝑊 ) ∈ 𝐵 ) → 𝑋 ≠ ( 0g𝑊 ) )
30 7 28 29 syl2anc ( 𝜑𝑋 ≠ ( 0g𝑊 ) )
31 30 adantr ( ( 𝜑𝑋 = 𝑌 ) → 𝑋 ≠ ( 0g𝑊 ) )
32 17 2 18 1 19 20 21 22 26 31 lvecvscan2 ( ( 𝜑𝑋 = 𝑌 ) → ( ( 𝐾 · 𝑋 ) = ( 𝐿 · 𝑋 ) ↔ 𝐾 = 𝐿 ) )
33 16 32 mpbid ( ( 𝜑𝑋 = 𝑌 ) → 𝐾 = 𝐿 )
34 13 33 jca ( ( 𝜑𝑋 = 𝑌 ) → ( 𝑋 = 𝑌𝐾 = 𝐿 ) )
35 7 adantr ( ( 𝜑𝑋𝑌 ) → 𝑋𝐵 )
36 9 adantr ( ( 𝜑𝑋𝑌 ) → 𝐾𝐹 )
37 opex 𝑋 , 𝐾 ⟩ ∈ V
38 37 a1i ( ( 𝜑𝑋𝑌 ) → ⟨ 𝑋 , 𝐾 ⟩ ∈ V )
39 opex 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ ∈ V
40 39 a1i ( ( 𝜑𝑋𝑌 ) → ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ ∈ V )
41 animorrl ( ( 𝜑𝑋𝑌 ) → ( 𝑋𝑌𝐾 ≠ ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ) )
42 opthneg ( ( 𝑋𝐵𝐾𝐹 ) → ( ⟨ 𝑋 , 𝐾 ⟩ ≠ ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ ↔ ( 𝑋𝑌𝐾 ≠ ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ) ) )
43 42 biimpar ( ( ( 𝑋𝐵𝐾𝐹 ) ∧ ( 𝑋𝑌𝐾 ≠ ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ) ) → ⟨ 𝑋 , 𝐾 ⟩ ≠ ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ )
44 35 36 41 43 syl21anc ( ( 𝜑𝑋𝑌 ) → ⟨ 𝑋 , 𝐾 ⟩ ≠ ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ )
45 animorrl ( ( 𝜑𝑋𝑌 ) → ( 𝑋𝑌𝐾0 ) )
46 opthneg ( ( 𝑋𝐵𝐾𝐹 ) → ( ⟨ 𝑋 , 𝐾 ⟩ ≠ ⟨ 𝑌 , 0 ⟩ ↔ ( 𝑋𝑌𝐾0 ) ) )
47 46 biimpar ( ( ( 𝑋𝐵𝐾𝐹 ) ∧ ( 𝑋𝑌𝐾0 ) ) → ⟨ 𝑋 , 𝐾 ⟩ ≠ ⟨ 𝑌 , 0 ⟩ )
48 35 36 45 47 syl21anc ( ( 𝜑𝑋𝑌 ) → ⟨ 𝑋 , 𝐾 ⟩ ≠ ⟨ 𝑌 , 0 ⟩ )
49 44 48 jca ( ( 𝜑𝑋𝑌 ) → ( ⟨ 𝑋 , 𝐾 ⟩ ≠ ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ ∧ ⟨ 𝑋 , 𝐾 ⟩ ≠ ⟨ 𝑌 , 0 ⟩ ) )
50 8 adantr ( ( 𝜑𝑋𝑌 ) → 𝑌𝐵 )
51 fvexd ( ( 𝜑𝑋𝑌 ) → ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ∈ V )
52 simpr ( ( 𝜑𝑋𝑌 ) → 𝑋𝑌 )
53 fprg ( ( ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝐾𝐹 ∧ ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ∈ V ) ∧ 𝑋𝑌 ) → { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } : { 𝑋 , 𝑌 } ⟶ { 𝐾 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) } )
54 35 50 36 51 52 53 syl221anc ( ( 𝜑𝑋𝑌 ) → { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } : { 𝑋 , 𝑌 } ⟶ { 𝐾 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) } )
55 prfi { 𝑋 , 𝑌 } ∈ Fin
56 55 a1i ( ( 𝜑𝑋𝑌 ) → { 𝑋 , 𝑌 } ∈ Fin )
57 4 fvexi 0 ∈ V
58 57 a1i ( ( 𝜑𝑋𝑌 ) → 0 ∈ V )
59 54 56 58 fdmfifsupp ( ( 𝜑𝑋𝑌 ) → { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } finSupp 0 )
60 lveclmod ( 𝑊 ∈ LVec → 𝑊 ∈ LMod )
61 5 60 syl ( 𝜑𝑊 ∈ LMod )
62 lmodcmn ( 𝑊 ∈ LMod → 𝑊 ∈ CMnd )
63 61 62 syl ( 𝜑𝑊 ∈ CMnd )
64 63 adantr ( ( 𝜑𝑋𝑌 ) → 𝑊 ∈ CMnd )
65 61 adantr ( ( 𝜑𝑋𝑌 ) → 𝑊 ∈ LMod )
66 18 lmodring ( 𝑊 ∈ LMod → ( Scalar ‘ 𝑊 ) ∈ Ring )
67 ringgrp ( ( Scalar ‘ 𝑊 ) ∈ Ring → ( Scalar ‘ 𝑊 ) ∈ Grp )
68 61 66 67 3syl ( 𝜑 → ( Scalar ‘ 𝑊 ) ∈ Grp )
69 eqid ( invg ‘ ( Scalar ‘ 𝑊 ) ) = ( invg ‘ ( Scalar ‘ 𝑊 ) )
70 1 69 grpinvcl ( ( ( Scalar ‘ 𝑊 ) ∈ Grp ∧ 𝐿𝐹 ) → ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ∈ 𝐹 )
71 68 10 70 syl2anc ( 𝜑 → ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ∈ 𝐹 )
72 9 71 prssd ( 𝜑 → { 𝐾 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) } ⊆ 𝐹 )
73 72 adantr ( ( 𝜑𝑋𝑌 ) → { 𝐾 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) } ⊆ 𝐹 )
74 54 73 fssd ( ( 𝜑𝑋𝑌 ) → { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } : { 𝑋 , 𝑌 } ⟶ 𝐹 )
75 eqidd ( ( 𝜑𝑋𝑌 ) → 𝑋 = 𝑋 )
76 75 orcd ( ( 𝜑𝑋𝑌 ) → ( 𝑋 = 𝑋𝑋 = 𝑌 ) )
77 elprg ( 𝑋𝐵 → ( 𝑋 ∈ { 𝑋 , 𝑌 } ↔ ( 𝑋 = 𝑋𝑋 = 𝑌 ) ) )
78 77 biimpar ( ( 𝑋𝐵 ∧ ( 𝑋 = 𝑋𝑋 = 𝑌 ) ) → 𝑋 ∈ { 𝑋 , 𝑌 } )
79 35 76 78 syl2anc ( ( 𝜑𝑋𝑌 ) → 𝑋 ∈ { 𝑋 , 𝑌 } )
80 74 79 ffvelrnd ( ( 𝜑𝑋𝑌 ) → ( { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } ‘ 𝑋 ) ∈ 𝐹 )
81 25 adantr ( ( 𝜑𝑋𝑌 ) → 𝑋 ∈ ( Base ‘ 𝑊 ) )
82 17 18 2 1 lmodvscl ( ( 𝑊 ∈ LMod ∧ ( { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } ‘ 𝑋 ) ∈ 𝐹𝑋 ∈ ( Base ‘ 𝑊 ) ) → ( ( { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } ‘ 𝑋 ) · 𝑋 ) ∈ ( Base ‘ 𝑊 ) )
83 65 80 81 82 syl3anc ( ( 𝜑𝑋𝑌 ) → ( ( { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } ‘ 𝑋 ) · 𝑋 ) ∈ ( Base ‘ 𝑊 ) )
84 eqidd ( ( 𝜑𝑋𝑌 ) → 𝑌 = 𝑌 )
85 84 olcd ( ( 𝜑𝑋𝑌 ) → ( 𝑌 = 𝑋𝑌 = 𝑌 ) )
86 elprg ( 𝑌𝐵 → ( 𝑌 ∈ { 𝑋 , 𝑌 } ↔ ( 𝑌 = 𝑋𝑌 = 𝑌 ) ) )
87 86 biimpar ( ( 𝑌𝐵 ∧ ( 𝑌 = 𝑋𝑌 = 𝑌 ) ) → 𝑌 ∈ { 𝑋 , 𝑌 } )
88 50 85 87 syl2anc ( ( 𝜑𝑋𝑌 ) → 𝑌 ∈ { 𝑋 , 𝑌 } )
89 74 88 ffvelrnd ( ( 𝜑𝑋𝑌 ) → ( { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } ‘ 𝑌 ) ∈ 𝐹 )
90 24 8 sseldd ( 𝜑𝑌 ∈ ( Base ‘ 𝑊 ) )
91 90 adantr ( ( 𝜑𝑋𝑌 ) → 𝑌 ∈ ( Base ‘ 𝑊 ) )
92 17 18 2 1 lmodvscl ( ( 𝑊 ∈ LMod ∧ ( { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } ‘ 𝑌 ) ∈ 𝐹𝑌 ∈ ( Base ‘ 𝑊 ) ) → ( ( { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } ‘ 𝑌 ) · 𝑌 ) ∈ ( Base ‘ 𝑊 ) )
93 65 89 91 92 syl3anc ( ( 𝜑𝑋𝑌 ) → ( ( { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } ‘ 𝑌 ) · 𝑌 ) ∈ ( Base ‘ 𝑊 ) )
94 fveq2 ( 𝑏 = 𝑋 → ( { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } ‘ 𝑏 ) = ( { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } ‘ 𝑋 ) )
95 id ( 𝑏 = 𝑋𝑏 = 𝑋 )
96 94 95 oveq12d ( 𝑏 = 𝑋 → ( ( { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } ‘ 𝑏 ) · 𝑏 ) = ( ( { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } ‘ 𝑋 ) · 𝑋 ) )
97 fveq2 ( 𝑏 = 𝑌 → ( { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } ‘ 𝑏 ) = ( { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } ‘ 𝑌 ) )
98 id ( 𝑏 = 𝑌𝑏 = 𝑌 )
99 97 98 oveq12d ( 𝑏 = 𝑌 → ( ( { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } ‘ 𝑏 ) · 𝑏 ) = ( ( { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } ‘ 𝑌 ) · 𝑌 ) )
100 17 3 96 99 gsumpr ( ( 𝑊 ∈ CMnd ∧ ( 𝑋𝐵𝑌𝐵𝑋𝑌 ) ∧ ( ( ( { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } ‘ 𝑋 ) · 𝑋 ) ∈ ( Base ‘ 𝑊 ) ∧ ( ( { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } ‘ 𝑌 ) · 𝑌 ) ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑊 Σg ( 𝑏 ∈ { 𝑋 , 𝑌 } ↦ ( ( { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } ‘ 𝑏 ) · 𝑏 ) ) ) = ( ( ( { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } ‘ 𝑋 ) · 𝑋 ) + ( ( { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } ‘ 𝑌 ) · 𝑌 ) ) )
101 64 35 50 52 83 93 100 syl132anc ( ( 𝜑𝑋𝑌 ) → ( 𝑊 Σg ( 𝑏 ∈ { 𝑋 , 𝑌 } ↦ ( ( { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } ‘ 𝑏 ) · 𝑏 ) ) ) = ( ( ( { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } ‘ 𝑋 ) · 𝑋 ) + ( ( { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } ‘ 𝑌 ) · 𝑌 ) ) )
102 fvpr1g ( ( 𝑋𝐵𝐾𝐹𝑋𝑌 ) → ( { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } ‘ 𝑋 ) = 𝐾 )
103 35 36 52 102 syl3anc ( ( 𝜑𝑋𝑌 ) → ( { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } ‘ 𝑋 ) = 𝐾 )
104 103 oveq1d ( ( 𝜑𝑋𝑌 ) → ( ( { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } ‘ 𝑋 ) · 𝑋 ) = ( 𝐾 · 𝑋 ) )
105 71 adantr ( ( 𝜑𝑋𝑌 ) → ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ∈ 𝐹 )
106 fvpr2g ( ( 𝑌𝐵 ∧ ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ∈ 𝐹𝑋𝑌 ) → ( { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } ‘ 𝑌 ) = ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) )
107 50 105 52 106 syl3anc ( ( 𝜑𝑋𝑌 ) → ( { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } ‘ 𝑌 ) = ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) )
108 107 oveq1d ( ( 𝜑𝑋𝑌 ) → ( ( { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } ‘ 𝑌 ) · 𝑌 ) = ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) · 𝑌 ) )
109 104 108 oveq12d ( ( 𝜑𝑋𝑌 ) → ( ( ( { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } ‘ 𝑋 ) · 𝑋 ) + ( ( { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } ‘ 𝑌 ) · 𝑌 ) ) = ( ( 𝐾 · 𝑋 ) + ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) · 𝑌 ) ) )
110 17 18 2 1 lmodvscl ( ( 𝑊 ∈ LMod ∧ 𝐾𝐹𝑋 ∈ ( Base ‘ 𝑊 ) ) → ( 𝐾 · 𝑋 ) ∈ ( Base ‘ 𝑊 ) )
111 61 9 25 110 syl3anc ( 𝜑 → ( 𝐾 · 𝑋 ) ∈ ( Base ‘ 𝑊 ) )
112 12 111 eqeltrrd ( 𝜑 → ( 𝐿 · 𝑌 ) ∈ ( Base ‘ 𝑊 ) )
113 eqid ( invg𝑊 ) = ( invg𝑊 )
114 eqid ( -g𝑊 ) = ( -g𝑊 )
115 17 3 113 114 grpsubval ( ( ( 𝐾 · 𝑋 ) ∈ ( Base ‘ 𝑊 ) ∧ ( 𝐿 · 𝑌 ) ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝐾 · 𝑋 ) ( -g𝑊 ) ( 𝐿 · 𝑌 ) ) = ( ( 𝐾 · 𝑋 ) + ( ( invg𝑊 ) ‘ ( 𝐿 · 𝑌 ) ) ) )
116 111 112 115 syl2anc ( 𝜑 → ( ( 𝐾 · 𝑋 ) ( -g𝑊 ) ( 𝐿 · 𝑌 ) ) = ( ( 𝐾 · 𝑋 ) + ( ( invg𝑊 ) ‘ ( 𝐿 · 𝑌 ) ) ) )
117 lmodgrp ( 𝑊 ∈ LMod → 𝑊 ∈ Grp )
118 61 117 syl ( 𝜑𝑊 ∈ Grp )
119 17 19 114 grpsubeq0 ( ( 𝑊 ∈ Grp ∧ ( 𝐾 · 𝑋 ) ∈ ( Base ‘ 𝑊 ) ∧ ( 𝐿 · 𝑌 ) ∈ ( Base ‘ 𝑊 ) ) → ( ( ( 𝐾 · 𝑋 ) ( -g𝑊 ) ( 𝐿 · 𝑌 ) ) = ( 0g𝑊 ) ↔ ( 𝐾 · 𝑋 ) = ( 𝐿 · 𝑌 ) ) )
120 118 111 112 119 syl3anc ( 𝜑 → ( ( ( 𝐾 · 𝑋 ) ( -g𝑊 ) ( 𝐿 · 𝑌 ) ) = ( 0g𝑊 ) ↔ ( 𝐾 · 𝑋 ) = ( 𝐿 · 𝑌 ) ) )
121 12 120 mpbird ( 𝜑 → ( ( 𝐾 · 𝑋 ) ( -g𝑊 ) ( 𝐿 · 𝑌 ) ) = ( 0g𝑊 ) )
122 17 18 2 113 1 69 61 90 10 lmodvsneg ( 𝜑 → ( ( invg𝑊 ) ‘ ( 𝐿 · 𝑌 ) ) = ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) · 𝑌 ) )
123 122 oveq2d ( 𝜑 → ( ( 𝐾 · 𝑋 ) + ( ( invg𝑊 ) ‘ ( 𝐿 · 𝑌 ) ) ) = ( ( 𝐾 · 𝑋 ) + ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) · 𝑌 ) ) )
124 116 121 123 3eqtr3rd ( 𝜑 → ( ( 𝐾 · 𝑋 ) + ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) · 𝑌 ) ) = ( 0g𝑊 ) )
125 124 adantr ( ( 𝜑𝑋𝑌 ) → ( ( 𝐾 · 𝑋 ) + ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) · 𝑌 ) ) = ( 0g𝑊 ) )
126 101 109 125 3eqtrd ( ( 𝜑𝑋𝑌 ) → ( 𝑊 Σg ( 𝑏 ∈ { 𝑋 , 𝑌 } ↦ ( ( { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } ‘ 𝑏 ) · 𝑏 ) ) ) = ( 0g𝑊 ) )
127 breq1 ( 𝑎 = { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } → ( 𝑎 finSupp 0 ↔ { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } finSupp 0 ) )
128 fveq1 ( 𝑎 = { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } → ( 𝑎𝑏 ) = ( { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } ‘ 𝑏 ) )
129 128 oveq1d ( 𝑎 = { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } → ( ( 𝑎𝑏 ) · 𝑏 ) = ( ( { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } ‘ 𝑏 ) · 𝑏 ) )
130 129 mpteq2dv ( 𝑎 = { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } → ( 𝑏 ∈ { 𝑋 , 𝑌 } ↦ ( ( 𝑎𝑏 ) · 𝑏 ) ) = ( 𝑏 ∈ { 𝑋 , 𝑌 } ↦ ( ( { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } ‘ 𝑏 ) · 𝑏 ) ) )
131 130 oveq2d ( 𝑎 = { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } → ( 𝑊 Σg ( 𝑏 ∈ { 𝑋 , 𝑌 } ↦ ( ( 𝑎𝑏 ) · 𝑏 ) ) ) = ( 𝑊 Σg ( 𝑏 ∈ { 𝑋 , 𝑌 } ↦ ( ( { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } ‘ 𝑏 ) · 𝑏 ) ) ) )
132 131 eqeq1d ( 𝑎 = { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } → ( ( 𝑊 Σg ( 𝑏 ∈ { 𝑋 , 𝑌 } ↦ ( ( 𝑎𝑏 ) · 𝑏 ) ) ) = ( 0g𝑊 ) ↔ ( 𝑊 Σg ( 𝑏 ∈ { 𝑋 , 𝑌 } ↦ ( ( { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } ‘ 𝑏 ) · 𝑏 ) ) ) = ( 0g𝑊 ) ) )
133 127 132 anbi12d ( 𝑎 = { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } → ( ( 𝑎 finSupp 0 ∧ ( 𝑊 Σg ( 𝑏 ∈ { 𝑋 , 𝑌 } ↦ ( ( 𝑎𝑏 ) · 𝑏 ) ) ) = ( 0g𝑊 ) ) ↔ ( { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } finSupp 0 ∧ ( 𝑊 Σg ( 𝑏 ∈ { 𝑋 , 𝑌 } ↦ ( ( { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } ‘ 𝑏 ) · 𝑏 ) ) ) = ( 0g𝑊 ) ) ) )
134 eqeq1 ( 𝑎 = { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } → ( 𝑎 = ( { 𝑋 , 𝑌 } × { 0 } ) ↔ { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } = ( { 𝑋 , 𝑌 } × { 0 } ) ) )
135 133 134 imbi12d ( 𝑎 = { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } → ( ( ( 𝑎 finSupp 0 ∧ ( 𝑊 Σg ( 𝑏 ∈ { 𝑋 , 𝑌 } ↦ ( ( 𝑎𝑏 ) · 𝑏 ) ) ) = ( 0g𝑊 ) ) → 𝑎 = ( { 𝑋 , 𝑌 } × { 0 } ) ) ↔ ( ( { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } finSupp 0 ∧ ( 𝑊 Σg ( 𝑏 ∈ { 𝑋 , 𝑌 } ↦ ( ( { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } ‘ 𝑏 ) · 𝑏 ) ) ) = ( 0g𝑊 ) ) → { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } = ( { 𝑋 , 𝑌 } × { 0 } ) ) ) )
136 7 8 prssd ( 𝜑 → { 𝑋 , 𝑌 } ⊆ 𝐵 )
137 136 24 sstrd ( 𝜑 → { 𝑋 , 𝑌 } ⊆ ( Base ‘ 𝑊 ) )
138 lindsss ( ( 𝑊 ∈ LMod ∧ 𝐵 ∈ ( LIndS ‘ 𝑊 ) ∧ { 𝑋 , 𝑌 } ⊆ 𝐵 ) → { 𝑋 , 𝑌 } ∈ ( LIndS ‘ 𝑊 ) )
139 61 6 136 138 syl3anc ( 𝜑 → { 𝑋 , 𝑌 } ∈ ( LIndS ‘ 𝑊 ) )
140 17 1 18 2 19 4 islinds5 ( ( 𝑊 ∈ LMod ∧ { 𝑋 , 𝑌 } ⊆ ( Base ‘ 𝑊 ) ) → ( { 𝑋 , 𝑌 } ∈ ( LIndS ‘ 𝑊 ) ↔ ∀ 𝑎 ∈ ( 𝐹m { 𝑋 , 𝑌 } ) ( ( 𝑎 finSupp 0 ∧ ( 𝑊 Σg ( 𝑏 ∈ { 𝑋 , 𝑌 } ↦ ( ( 𝑎𝑏 ) · 𝑏 ) ) ) = ( 0g𝑊 ) ) → 𝑎 = ( { 𝑋 , 𝑌 } × { 0 } ) ) ) )
141 140 biimpa ( ( ( 𝑊 ∈ LMod ∧ { 𝑋 , 𝑌 } ⊆ ( Base ‘ 𝑊 ) ) ∧ { 𝑋 , 𝑌 } ∈ ( LIndS ‘ 𝑊 ) ) → ∀ 𝑎 ∈ ( 𝐹m { 𝑋 , 𝑌 } ) ( ( 𝑎 finSupp 0 ∧ ( 𝑊 Σg ( 𝑏 ∈ { 𝑋 , 𝑌 } ↦ ( ( 𝑎𝑏 ) · 𝑏 ) ) ) = ( 0g𝑊 ) ) → 𝑎 = ( { 𝑋 , 𝑌 } × { 0 } ) ) )
142 61 137 139 141 syl21anc ( 𝜑 → ∀ 𝑎 ∈ ( 𝐹m { 𝑋 , 𝑌 } ) ( ( 𝑎 finSupp 0 ∧ ( 𝑊 Σg ( 𝑏 ∈ { 𝑋 , 𝑌 } ↦ ( ( 𝑎𝑏 ) · 𝑏 ) ) ) = ( 0g𝑊 ) ) → 𝑎 = ( { 𝑋 , 𝑌 } × { 0 } ) ) )
143 142 adantr ( ( 𝜑𝑋𝑌 ) → ∀ 𝑎 ∈ ( 𝐹m { 𝑋 , 𝑌 } ) ( ( 𝑎 finSupp 0 ∧ ( 𝑊 Σg ( 𝑏 ∈ { 𝑋 , 𝑌 } ↦ ( ( 𝑎𝑏 ) · 𝑏 ) ) ) = ( 0g𝑊 ) ) → 𝑎 = ( { 𝑋 , 𝑌 } × { 0 } ) ) )
144 1 fvexi 𝐹 ∈ V
145 144 a1i ( ( 𝜑𝑋𝑌 ) → 𝐹 ∈ V )
146 139 elexd ( 𝜑 → { 𝑋 , 𝑌 } ∈ V )
147 146 adantr ( ( 𝜑𝑋𝑌 ) → { 𝑋 , 𝑌 } ∈ V )
148 145 147 elmapd ( ( 𝜑𝑋𝑌 ) → ( { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } ∈ ( 𝐹m { 𝑋 , 𝑌 } ) ↔ { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } : { 𝑋 , 𝑌 } ⟶ 𝐹 ) )
149 74 148 mpbird ( ( 𝜑𝑋𝑌 ) → { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } ∈ ( 𝐹m { 𝑋 , 𝑌 } ) )
150 135 143 149 rspcdva ( ( 𝜑𝑋𝑌 ) → ( ( { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } finSupp 0 ∧ ( 𝑊 Σg ( 𝑏 ∈ { 𝑋 , 𝑌 } ↦ ( ( { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } ‘ 𝑏 ) · 𝑏 ) ) ) = ( 0g𝑊 ) ) → { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } = ( { 𝑋 , 𝑌 } × { 0 } ) ) )
151 59 126 150 mp2and ( ( 𝜑𝑋𝑌 ) → { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } = ( { 𝑋 , 𝑌 } × { 0 } ) )
152 xpprsng ( ( 𝑋𝐵𝑌𝐵0 ∈ V ) → ( { 𝑋 , 𝑌 } × { 0 } ) = { ⟨ 𝑋 , 0 ⟩ , ⟨ 𝑌 , 0 ⟩ } )
153 35 50 58 152 syl3anc ( ( 𝜑𝑋𝑌 ) → ( { 𝑋 , 𝑌 } × { 0 } ) = { ⟨ 𝑋 , 0 ⟩ , ⟨ 𝑌 , 0 ⟩ } )
154 151 153 eqtrd ( ( 𝜑𝑋𝑌 ) → { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } = { ⟨ 𝑋 , 0 ⟩ , ⟨ 𝑌 , 0 ⟩ } )
155 opthprneg ( ( ( ⟨ 𝑋 , 𝐾 ⟩ ∈ V ∧ ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ ∈ V ) ∧ ( ⟨ 𝑋 , 𝐾 ⟩ ≠ ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ ∧ ⟨ 𝑋 , 𝐾 ⟩ ≠ ⟨ 𝑌 , 0 ⟩ ) ) → ( { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } = { ⟨ 𝑋 , 0 ⟩ , ⟨ 𝑌 , 0 ⟩ } ↔ ( ⟨ 𝑋 , 𝐾 ⟩ = ⟨ 𝑋 , 0 ⟩ ∧ ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ = ⟨ 𝑌 , 0 ⟩ ) ) )
156 155 biimpa ( ( ( ( ⟨ 𝑋 , 𝐾 ⟩ ∈ V ∧ ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ ∈ V ) ∧ ( ⟨ 𝑋 , 𝐾 ⟩ ≠ ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ ∧ ⟨ 𝑋 , 𝐾 ⟩ ≠ ⟨ 𝑌 , 0 ⟩ ) ) ∧ { ⟨ 𝑋 , 𝐾 ⟩ , ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ } = { ⟨ 𝑋 , 0 ⟩ , ⟨ 𝑌 , 0 ⟩ } ) → ( ⟨ 𝑋 , 𝐾 ⟩ = ⟨ 𝑋 , 0 ⟩ ∧ ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ = ⟨ 𝑌 , 0 ⟩ ) )
157 38 40 49 154 156 syl1111anc ( ( 𝜑𝑋𝑌 ) → ( ⟨ 𝑋 , 𝐾 ⟩ = ⟨ 𝑋 , 0 ⟩ ∧ ⟨ 𝑌 , ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝐿 ) ⟩ = ⟨ 𝑌 , 0 ⟩ ) )
158 157 simpld ( ( 𝜑𝑋𝑌 ) → ⟨ 𝑋 , 𝐾 ⟩ = ⟨ 𝑋 , 0 ⟩ )
159 opthg ( ( 𝑋𝐵𝐾𝐹 ) → ( ⟨ 𝑋 , 𝐾 ⟩ = ⟨ 𝑋 , 0 ⟩ ↔ ( 𝑋 = 𝑋𝐾 = 0 ) ) )
160 159 simplbda ( ( ( 𝑋𝐵𝐾𝐹 ) ∧ ⟨ 𝑋 , 𝐾 ⟩ = ⟨ 𝑋 , 0 ⟩ ) → 𝐾 = 0 )
161 35 36 158 160 syl21anc ( ( 𝜑𝑋𝑌 ) → 𝐾 = 0 )
162 11 adantr ( ( 𝜑𝑋𝑌 ) → 𝐾0 )
163 161 162 pm2.21ddne ( ( 𝜑𝑋𝑌 ) → ( 𝑋 = 𝑌𝐾 = 𝐿 ) )
164 34 163 pm2.61dane ( 𝜑 → ( 𝑋 = 𝑌𝐾 = 𝐿 ) )