Step |
Hyp |
Ref |
Expression |
1 |
|
lindfpropd.1 |
⊢ ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) ) |
2 |
|
lindfpropd.2 |
⊢ ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝐾 ) ) = ( Base ‘ ( Scalar ‘ 𝐿 ) ) ) |
3 |
|
lindfpropd.3 |
⊢ ( 𝜑 → ( 0g ‘ ( Scalar ‘ 𝐾 ) ) = ( 0g ‘ ( Scalar ‘ 𝐿 ) ) ) |
4 |
|
lindfpropd.4 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) |
5 |
|
lindfpropd.5 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐾 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐾 ) 𝑦 ) ∈ ( Base ‘ 𝐾 ) ) |
6 |
|
lindfpropd.6 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐾 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝐿 ) 𝑦 ) ) |
7 |
|
lindfpropd.k |
⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) |
8 |
|
lindfpropd.l |
⊢ ( 𝜑 → 𝐿 ∈ 𝑊 ) |
9 |
|
lindfpropd.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
10 |
3
|
sneqd |
⊢ ( 𝜑 → { ( 0g ‘ ( Scalar ‘ 𝐾 ) ) } = { ( 0g ‘ ( Scalar ‘ 𝐿 ) ) } ) |
11 |
2 10
|
difeq12d |
⊢ ( 𝜑 → ( ( Base ‘ ( Scalar ‘ 𝐾 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐾 ) ) } ) = ( ( Base ‘ ( Scalar ‘ 𝐿 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐿 ) ) } ) ) |
12 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑋 : dom 𝑋 ⟶ ( Base ‘ 𝐾 ) ) ∧ 𝑖 ∈ dom 𝑋 ) → ( ( Base ‘ ( Scalar ‘ 𝐾 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐾 ) ) } ) = ( ( Base ‘ ( Scalar ‘ 𝐿 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐿 ) ) } ) ) |
13 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 : dom 𝑋 ⟶ ( Base ‘ 𝐾 ) ) ∧ 𝑖 ∈ dom 𝑋 ) ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝐾 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐾 ) ) } ) ) → 𝜑 ) |
14 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 : dom 𝑋 ⟶ ( Base ‘ 𝐾 ) ) ∧ 𝑖 ∈ dom 𝑋 ) ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝐾 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐾 ) ) } ) ) → 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝐾 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐾 ) ) } ) ) |
15 |
14
|
eldifad |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 : dom 𝑋 ⟶ ( Base ‘ 𝐾 ) ) ∧ 𝑖 ∈ dom 𝑋 ) ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝐾 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐾 ) ) } ) ) → 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝐾 ) ) ) |
16 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 : dom 𝑋 ⟶ ( Base ‘ 𝐾 ) ) → 𝑋 : dom 𝑋 ⟶ ( Base ‘ 𝐾 ) ) |
17 |
16
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑋 : dom 𝑋 ⟶ ( Base ‘ 𝐾 ) ) ∧ 𝑖 ∈ dom 𝑋 ) → ( 𝑋 ‘ 𝑖 ) ∈ ( Base ‘ 𝐾 ) ) |
18 |
17
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 : dom 𝑋 ⟶ ( Base ‘ 𝐾 ) ) ∧ 𝑖 ∈ dom 𝑋 ) ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝐾 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐾 ) ) } ) ) → ( 𝑋 ‘ 𝑖 ) ∈ ( Base ‘ 𝐾 ) ) |
19 |
6
|
oveqrspc2v |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝐾 ) ) ∧ ( 𝑋 ‘ 𝑖 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝑘 ( ·𝑠 ‘ 𝐾 ) ( 𝑋 ‘ 𝑖 ) ) = ( 𝑘 ( ·𝑠 ‘ 𝐿 ) ( 𝑋 ‘ 𝑖 ) ) ) |
20 |
13 15 18 19
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 : dom 𝑋 ⟶ ( Base ‘ 𝐾 ) ) ∧ 𝑖 ∈ dom 𝑋 ) ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝐾 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐾 ) ) } ) ) → ( 𝑘 ( ·𝑠 ‘ 𝐾 ) ( 𝑋 ‘ 𝑖 ) ) = ( 𝑘 ( ·𝑠 ‘ 𝐿 ) ( 𝑋 ‘ 𝑖 ) ) ) |
21 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) ) |
22 |
|
ssidd |
⊢ ( 𝜑 → ( Base ‘ 𝐾 ) ⊆ ( Base ‘ 𝐾 ) ) |
23 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝐾 ) ) = ( Base ‘ ( Scalar ‘ 𝐾 ) ) ) |
24 |
21 1 22 4 5 6 23 2 7 8
|
lsppropd |
⊢ ( 𝜑 → ( LSpan ‘ 𝐾 ) = ( LSpan ‘ 𝐿 ) ) |
25 |
24
|
fveq1d |
⊢ ( 𝜑 → ( ( LSpan ‘ 𝐾 ) ‘ ( 𝑋 “ ( dom 𝑋 ∖ { 𝑖 } ) ) ) = ( ( LSpan ‘ 𝐿 ) ‘ ( 𝑋 “ ( dom 𝑋 ∖ { 𝑖 } ) ) ) ) |
26 |
25
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 : dom 𝑋 ⟶ ( Base ‘ 𝐾 ) ) ∧ 𝑖 ∈ dom 𝑋 ) ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝐾 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐾 ) ) } ) ) → ( ( LSpan ‘ 𝐾 ) ‘ ( 𝑋 “ ( dom 𝑋 ∖ { 𝑖 } ) ) ) = ( ( LSpan ‘ 𝐿 ) ‘ ( 𝑋 “ ( dom 𝑋 ∖ { 𝑖 } ) ) ) ) |
27 |
20 26
|
eleq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 : dom 𝑋 ⟶ ( Base ‘ 𝐾 ) ) ∧ 𝑖 ∈ dom 𝑋 ) ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝐾 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐾 ) ) } ) ) → ( ( 𝑘 ( ·𝑠 ‘ 𝐾 ) ( 𝑋 ‘ 𝑖 ) ) ∈ ( ( LSpan ‘ 𝐾 ) ‘ ( 𝑋 “ ( dom 𝑋 ∖ { 𝑖 } ) ) ) ↔ ( 𝑘 ( ·𝑠 ‘ 𝐿 ) ( 𝑋 ‘ 𝑖 ) ) ∈ ( ( LSpan ‘ 𝐿 ) ‘ ( 𝑋 “ ( dom 𝑋 ∖ { 𝑖 } ) ) ) ) ) |
28 |
27
|
notbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 : dom 𝑋 ⟶ ( Base ‘ 𝐾 ) ) ∧ 𝑖 ∈ dom 𝑋 ) ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝐾 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐾 ) ) } ) ) → ( ¬ ( 𝑘 ( ·𝑠 ‘ 𝐾 ) ( 𝑋 ‘ 𝑖 ) ) ∈ ( ( LSpan ‘ 𝐾 ) ‘ ( 𝑋 “ ( dom 𝑋 ∖ { 𝑖 } ) ) ) ↔ ¬ ( 𝑘 ( ·𝑠 ‘ 𝐿 ) ( 𝑋 ‘ 𝑖 ) ) ∈ ( ( LSpan ‘ 𝐿 ) ‘ ( 𝑋 “ ( dom 𝑋 ∖ { 𝑖 } ) ) ) ) ) |
29 |
12 28
|
raleqbidva |
⊢ ( ( ( 𝜑 ∧ 𝑋 : dom 𝑋 ⟶ ( Base ‘ 𝐾 ) ) ∧ 𝑖 ∈ dom 𝑋 ) → ( ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝐾 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐾 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝐾 ) ( 𝑋 ‘ 𝑖 ) ) ∈ ( ( LSpan ‘ 𝐾 ) ‘ ( 𝑋 “ ( dom 𝑋 ∖ { 𝑖 } ) ) ) ↔ ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝐿 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐿 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝐿 ) ( 𝑋 ‘ 𝑖 ) ) ∈ ( ( LSpan ‘ 𝐿 ) ‘ ( 𝑋 “ ( dom 𝑋 ∖ { 𝑖 } ) ) ) ) ) |
30 |
29
|
ralbidva |
⊢ ( ( 𝜑 ∧ 𝑋 : dom 𝑋 ⟶ ( Base ‘ 𝐾 ) ) → ( ∀ 𝑖 ∈ dom 𝑋 ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝐾 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐾 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝐾 ) ( 𝑋 ‘ 𝑖 ) ) ∈ ( ( LSpan ‘ 𝐾 ) ‘ ( 𝑋 “ ( dom 𝑋 ∖ { 𝑖 } ) ) ) ↔ ∀ 𝑖 ∈ dom 𝑋 ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝐿 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐿 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝐿 ) ( 𝑋 ‘ 𝑖 ) ) ∈ ( ( LSpan ‘ 𝐿 ) ‘ ( 𝑋 “ ( dom 𝑋 ∖ { 𝑖 } ) ) ) ) ) |
31 |
30
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝑋 : dom 𝑋 ⟶ ( Base ‘ 𝐾 ) ∧ ∀ 𝑖 ∈ dom 𝑋 ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝐾 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐾 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝐾 ) ( 𝑋 ‘ 𝑖 ) ) ∈ ( ( LSpan ‘ 𝐾 ) ‘ ( 𝑋 “ ( dom 𝑋 ∖ { 𝑖 } ) ) ) ) ↔ ( 𝑋 : dom 𝑋 ⟶ ( Base ‘ 𝐾 ) ∧ ∀ 𝑖 ∈ dom 𝑋 ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝐿 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐿 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝐿 ) ( 𝑋 ‘ 𝑖 ) ) ∈ ( ( LSpan ‘ 𝐿 ) ‘ ( 𝑋 “ ( dom 𝑋 ∖ { 𝑖 } ) ) ) ) ) ) |
32 |
1
|
feq3d |
⊢ ( 𝜑 → ( 𝑋 : dom 𝑋 ⟶ ( Base ‘ 𝐾 ) ↔ 𝑋 : dom 𝑋 ⟶ ( Base ‘ 𝐿 ) ) ) |
33 |
32
|
anbi1d |
⊢ ( 𝜑 → ( ( 𝑋 : dom 𝑋 ⟶ ( Base ‘ 𝐾 ) ∧ ∀ 𝑖 ∈ dom 𝑋 ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝐿 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐿 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝐿 ) ( 𝑋 ‘ 𝑖 ) ) ∈ ( ( LSpan ‘ 𝐿 ) ‘ ( 𝑋 “ ( dom 𝑋 ∖ { 𝑖 } ) ) ) ) ↔ ( 𝑋 : dom 𝑋 ⟶ ( Base ‘ 𝐿 ) ∧ ∀ 𝑖 ∈ dom 𝑋 ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝐿 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐿 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝐿 ) ( 𝑋 ‘ 𝑖 ) ) ∈ ( ( LSpan ‘ 𝐿 ) ‘ ( 𝑋 “ ( dom 𝑋 ∖ { 𝑖 } ) ) ) ) ) ) |
34 |
31 33
|
bitrd |
⊢ ( 𝜑 → ( ( 𝑋 : dom 𝑋 ⟶ ( Base ‘ 𝐾 ) ∧ ∀ 𝑖 ∈ dom 𝑋 ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝐾 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐾 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝐾 ) ( 𝑋 ‘ 𝑖 ) ) ∈ ( ( LSpan ‘ 𝐾 ) ‘ ( 𝑋 “ ( dom 𝑋 ∖ { 𝑖 } ) ) ) ) ↔ ( 𝑋 : dom 𝑋 ⟶ ( Base ‘ 𝐿 ) ∧ ∀ 𝑖 ∈ dom 𝑋 ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝐿 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐿 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝐿 ) ( 𝑋 ‘ 𝑖 ) ) ∈ ( ( LSpan ‘ 𝐿 ) ‘ ( 𝑋 “ ( dom 𝑋 ∖ { 𝑖 } ) ) ) ) ) ) |
35 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
36 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐾 ) = ( ·𝑠 ‘ 𝐾 ) |
37 |
|
eqid |
⊢ ( LSpan ‘ 𝐾 ) = ( LSpan ‘ 𝐾 ) |
38 |
|
eqid |
⊢ ( Scalar ‘ 𝐾 ) = ( Scalar ‘ 𝐾 ) |
39 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝐾 ) ) = ( Base ‘ ( Scalar ‘ 𝐾 ) ) |
40 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝐾 ) ) = ( 0g ‘ ( Scalar ‘ 𝐾 ) ) |
41 |
35 36 37 38 39 40
|
islindf |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑋 LIndF 𝐾 ↔ ( 𝑋 : dom 𝑋 ⟶ ( Base ‘ 𝐾 ) ∧ ∀ 𝑖 ∈ dom 𝑋 ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝐾 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐾 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝐾 ) ( 𝑋 ‘ 𝑖 ) ) ∈ ( ( LSpan ‘ 𝐾 ) ‘ ( 𝑋 “ ( dom 𝑋 ∖ { 𝑖 } ) ) ) ) ) ) |
42 |
7 9 41
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 LIndF 𝐾 ↔ ( 𝑋 : dom 𝑋 ⟶ ( Base ‘ 𝐾 ) ∧ ∀ 𝑖 ∈ dom 𝑋 ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝐾 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐾 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝐾 ) ( 𝑋 ‘ 𝑖 ) ) ∈ ( ( LSpan ‘ 𝐾 ) ‘ ( 𝑋 “ ( dom 𝑋 ∖ { 𝑖 } ) ) ) ) ) ) |
43 |
|
eqid |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) |
44 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐿 ) = ( ·𝑠 ‘ 𝐿 ) |
45 |
|
eqid |
⊢ ( LSpan ‘ 𝐿 ) = ( LSpan ‘ 𝐿 ) |
46 |
|
eqid |
⊢ ( Scalar ‘ 𝐿 ) = ( Scalar ‘ 𝐿 ) |
47 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝐿 ) ) = ( Base ‘ ( Scalar ‘ 𝐿 ) ) |
48 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝐿 ) ) = ( 0g ‘ ( Scalar ‘ 𝐿 ) ) |
49 |
43 44 45 46 47 48
|
islindf |
⊢ ( ( 𝐿 ∈ 𝑊 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑋 LIndF 𝐿 ↔ ( 𝑋 : dom 𝑋 ⟶ ( Base ‘ 𝐿 ) ∧ ∀ 𝑖 ∈ dom 𝑋 ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝐿 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐿 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝐿 ) ( 𝑋 ‘ 𝑖 ) ) ∈ ( ( LSpan ‘ 𝐿 ) ‘ ( 𝑋 “ ( dom 𝑋 ∖ { 𝑖 } ) ) ) ) ) ) |
50 |
8 9 49
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 LIndF 𝐿 ↔ ( 𝑋 : dom 𝑋 ⟶ ( Base ‘ 𝐿 ) ∧ ∀ 𝑖 ∈ dom 𝑋 ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝐿 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐿 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝐿 ) ( 𝑋 ‘ 𝑖 ) ) ∈ ( ( LSpan ‘ 𝐿 ) ‘ ( 𝑋 “ ( dom 𝑋 ∖ { 𝑖 } ) ) ) ) ) ) |
51 |
34 42 50
|
3bitr4d |
⊢ ( 𝜑 → ( 𝑋 LIndF 𝐾 ↔ 𝑋 LIndF 𝐿 ) ) |