Metamath Proof Explorer


Theorem lsppropd

Description: If two structures have the same components (properties), they have the same span function. (Contributed by Mario Carneiro, 9-Feb-2015) (Revised by Mario Carneiro, 14-Jun-2015) (Revised by AV, 24-Apr-2024)

Ref Expression
Hypotheses lsspropd.b1 ( 𝜑𝐵 = ( Base ‘ 𝐾 ) )
lsspropd.b2 ( 𝜑𝐵 = ( Base ‘ 𝐿 ) )
lsspropd.w ( 𝜑𝐵𝑊 )
lsspropd.p ( ( 𝜑 ∧ ( 𝑥𝑊𝑦𝑊 ) ) → ( 𝑥 ( +g𝐾 ) 𝑦 ) = ( 𝑥 ( +g𝐿 ) 𝑦 ) )
lsspropd.s1 ( ( 𝜑 ∧ ( 𝑥𝑃𝑦𝐵 ) ) → ( 𝑥 ( ·𝑠𝐾 ) 𝑦 ) ∈ 𝑊 )
lsspropd.s2 ( ( 𝜑 ∧ ( 𝑥𝑃𝑦𝐵 ) ) → ( 𝑥 ( ·𝑠𝐾 ) 𝑦 ) = ( 𝑥 ( ·𝑠𝐿 ) 𝑦 ) )
lsspropd.p1 ( 𝜑𝑃 = ( Base ‘ ( Scalar ‘ 𝐾 ) ) )
lsspropd.p2 ( 𝜑𝑃 = ( Base ‘ ( Scalar ‘ 𝐿 ) ) )
lsppropd.v1 ( 𝜑𝐾𝑋 )
lsppropd.v2 ( 𝜑𝐿𝑌 )
Assertion lsppropd ( 𝜑 → ( LSpan ‘ 𝐾 ) = ( LSpan ‘ 𝐿 ) )

Proof

Step Hyp Ref Expression
1 lsspropd.b1 ( 𝜑𝐵 = ( Base ‘ 𝐾 ) )
2 lsspropd.b2 ( 𝜑𝐵 = ( Base ‘ 𝐿 ) )
3 lsspropd.w ( 𝜑𝐵𝑊 )
4 lsspropd.p ( ( 𝜑 ∧ ( 𝑥𝑊𝑦𝑊 ) ) → ( 𝑥 ( +g𝐾 ) 𝑦 ) = ( 𝑥 ( +g𝐿 ) 𝑦 ) )
5 lsspropd.s1 ( ( 𝜑 ∧ ( 𝑥𝑃𝑦𝐵 ) ) → ( 𝑥 ( ·𝑠𝐾 ) 𝑦 ) ∈ 𝑊 )
6 lsspropd.s2 ( ( 𝜑 ∧ ( 𝑥𝑃𝑦𝐵 ) ) → ( 𝑥 ( ·𝑠𝐾 ) 𝑦 ) = ( 𝑥 ( ·𝑠𝐿 ) 𝑦 ) )
7 lsspropd.p1 ( 𝜑𝑃 = ( Base ‘ ( Scalar ‘ 𝐾 ) ) )
8 lsspropd.p2 ( 𝜑𝑃 = ( Base ‘ ( Scalar ‘ 𝐿 ) ) )
9 lsppropd.v1 ( 𝜑𝐾𝑋 )
10 lsppropd.v2 ( 𝜑𝐿𝑌 )
11 1 2 eqtr3d ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) )
12 11 pweqd ( 𝜑 → 𝒫 ( Base ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐿 ) )
13 1 2 3 4 5 6 7 8 lsspropd ( 𝜑 → ( LSubSp ‘ 𝐾 ) = ( LSubSp ‘ 𝐿 ) )
14 13 rabeqdv ( 𝜑 → { 𝑡 ∈ ( LSubSp ‘ 𝐾 ) ∣ 𝑠𝑡 } = { 𝑡 ∈ ( LSubSp ‘ 𝐿 ) ∣ 𝑠𝑡 } )
15 14 inteqd ( 𝜑 { 𝑡 ∈ ( LSubSp ‘ 𝐾 ) ∣ 𝑠𝑡 } = { 𝑡 ∈ ( LSubSp ‘ 𝐿 ) ∣ 𝑠𝑡 } )
16 12 15 mpteq12dv ( 𝜑 → ( 𝑠 ∈ 𝒫 ( Base ‘ 𝐾 ) ↦ { 𝑡 ∈ ( LSubSp ‘ 𝐾 ) ∣ 𝑠𝑡 } ) = ( 𝑠 ∈ 𝒫 ( Base ‘ 𝐿 ) ↦ { 𝑡 ∈ ( LSubSp ‘ 𝐿 ) ∣ 𝑠𝑡 } ) )
17 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
18 eqid ( LSubSp ‘ 𝐾 ) = ( LSubSp ‘ 𝐾 )
19 eqid ( LSpan ‘ 𝐾 ) = ( LSpan ‘ 𝐾 )
20 17 18 19 lspfval ( 𝐾𝑋 → ( LSpan ‘ 𝐾 ) = ( 𝑠 ∈ 𝒫 ( Base ‘ 𝐾 ) ↦ { 𝑡 ∈ ( LSubSp ‘ 𝐾 ) ∣ 𝑠𝑡 } ) )
21 9 20 syl ( 𝜑 → ( LSpan ‘ 𝐾 ) = ( 𝑠 ∈ 𝒫 ( Base ‘ 𝐾 ) ↦ { 𝑡 ∈ ( LSubSp ‘ 𝐾 ) ∣ 𝑠𝑡 } ) )
22 eqid ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 )
23 eqid ( LSubSp ‘ 𝐿 ) = ( LSubSp ‘ 𝐿 )
24 eqid ( LSpan ‘ 𝐿 ) = ( LSpan ‘ 𝐿 )
25 22 23 24 lspfval ( 𝐿𝑌 → ( LSpan ‘ 𝐿 ) = ( 𝑠 ∈ 𝒫 ( Base ‘ 𝐿 ) ↦ { 𝑡 ∈ ( LSubSp ‘ 𝐿 ) ∣ 𝑠𝑡 } ) )
26 10 25 syl ( 𝜑 → ( LSpan ‘ 𝐿 ) = ( 𝑠 ∈ 𝒫 ( Base ‘ 𝐿 ) ↦ { 𝑡 ∈ ( LSubSp ‘ 𝐿 ) ∣ 𝑠𝑡 } ) )
27 16 21 26 3eqtr4d ( 𝜑 → ( LSpan ‘ 𝐾 ) = ( LSpan ‘ 𝐿 ) )