Step |
Hyp |
Ref |
Expression |
1 |
|
lsspropd.b1 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) |
2 |
|
lsspropd.b2 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) |
3 |
|
lsspropd.w |
⊢ ( 𝜑 → 𝐵 ⊆ 𝑊 ) |
4 |
|
lsspropd.p |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) |
5 |
|
lsspropd.s1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐾 ) 𝑦 ) ∈ 𝑊 ) |
6 |
|
lsspropd.s2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝐿 ) 𝑦 ) ) |
7 |
|
lsspropd.p1 |
⊢ ( 𝜑 → 𝑃 = ( Base ‘ ( Scalar ‘ 𝐾 ) ) ) |
8 |
|
lsspropd.p2 |
⊢ ( 𝜑 → 𝑃 = ( Base ‘ ( Scalar ‘ 𝐿 ) ) ) |
9 |
|
lsppropd.v1 |
⊢ ( 𝜑 → 𝐾 ∈ 𝑋 ) |
10 |
|
lsppropd.v2 |
⊢ ( 𝜑 → 𝐿 ∈ 𝑌 ) |
11 |
1 2
|
eqtr3d |
⊢ ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) ) |
12 |
11
|
pweqd |
⊢ ( 𝜑 → 𝒫 ( Base ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐿 ) ) |
13 |
1 2 3 4 5 6 7 8
|
lsspropd |
⊢ ( 𝜑 → ( LSubSp ‘ 𝐾 ) = ( LSubSp ‘ 𝐿 ) ) |
14 |
13
|
rabeqdv |
⊢ ( 𝜑 → { 𝑡 ∈ ( LSubSp ‘ 𝐾 ) ∣ 𝑠 ⊆ 𝑡 } = { 𝑡 ∈ ( LSubSp ‘ 𝐿 ) ∣ 𝑠 ⊆ 𝑡 } ) |
15 |
14
|
inteqd |
⊢ ( 𝜑 → ∩ { 𝑡 ∈ ( LSubSp ‘ 𝐾 ) ∣ 𝑠 ⊆ 𝑡 } = ∩ { 𝑡 ∈ ( LSubSp ‘ 𝐿 ) ∣ 𝑠 ⊆ 𝑡 } ) |
16 |
12 15
|
mpteq12dv |
⊢ ( 𝜑 → ( 𝑠 ∈ 𝒫 ( Base ‘ 𝐾 ) ↦ ∩ { 𝑡 ∈ ( LSubSp ‘ 𝐾 ) ∣ 𝑠 ⊆ 𝑡 } ) = ( 𝑠 ∈ 𝒫 ( Base ‘ 𝐿 ) ↦ ∩ { 𝑡 ∈ ( LSubSp ‘ 𝐿 ) ∣ 𝑠 ⊆ 𝑡 } ) ) |
17 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
18 |
|
eqid |
⊢ ( LSubSp ‘ 𝐾 ) = ( LSubSp ‘ 𝐾 ) |
19 |
|
eqid |
⊢ ( LSpan ‘ 𝐾 ) = ( LSpan ‘ 𝐾 ) |
20 |
17 18 19
|
lspfval |
⊢ ( 𝐾 ∈ 𝑋 → ( LSpan ‘ 𝐾 ) = ( 𝑠 ∈ 𝒫 ( Base ‘ 𝐾 ) ↦ ∩ { 𝑡 ∈ ( LSubSp ‘ 𝐾 ) ∣ 𝑠 ⊆ 𝑡 } ) ) |
21 |
9 20
|
syl |
⊢ ( 𝜑 → ( LSpan ‘ 𝐾 ) = ( 𝑠 ∈ 𝒫 ( Base ‘ 𝐾 ) ↦ ∩ { 𝑡 ∈ ( LSubSp ‘ 𝐾 ) ∣ 𝑠 ⊆ 𝑡 } ) ) |
22 |
|
eqid |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) |
23 |
|
eqid |
⊢ ( LSubSp ‘ 𝐿 ) = ( LSubSp ‘ 𝐿 ) |
24 |
|
eqid |
⊢ ( LSpan ‘ 𝐿 ) = ( LSpan ‘ 𝐿 ) |
25 |
22 23 24
|
lspfval |
⊢ ( 𝐿 ∈ 𝑌 → ( LSpan ‘ 𝐿 ) = ( 𝑠 ∈ 𝒫 ( Base ‘ 𝐿 ) ↦ ∩ { 𝑡 ∈ ( LSubSp ‘ 𝐿 ) ∣ 𝑠 ⊆ 𝑡 } ) ) |
26 |
10 25
|
syl |
⊢ ( 𝜑 → ( LSpan ‘ 𝐿 ) = ( 𝑠 ∈ 𝒫 ( Base ‘ 𝐿 ) ↦ ∩ { 𝑡 ∈ ( LSubSp ‘ 𝐿 ) ∣ 𝑠 ⊆ 𝑡 } ) ) |
27 |
16 21 26
|
3eqtr4d |
⊢ ( 𝜑 → ( LSpan ‘ 𝐾 ) = ( LSpan ‘ 𝐿 ) ) |