Step |
Hyp |
Ref |
Expression |
1 |
|
lindfpropd.1 |
|
2 |
|
lindfpropd.2 |
|
3 |
|
lindfpropd.3 |
|
4 |
|
lindfpropd.4 |
|
5 |
|
lindfpropd.5 |
|
6 |
|
lindfpropd.6 |
|
7 |
|
lindfpropd.k |
|
8 |
|
lindfpropd.l |
|
9 |
|
lindfpropd.x |
|
10 |
3
|
sneqd |
|
11 |
2 10
|
difeq12d |
|
12 |
11
|
ad2antrr |
|
13 |
|
simplll |
|
14 |
|
simpr |
|
15 |
14
|
eldifad |
|
16 |
|
simpr |
|
17 |
16
|
ffvelrnda |
|
18 |
17
|
adantr |
|
19 |
6
|
oveqrspc2v |
|
20 |
13 15 18 19
|
syl12anc |
|
21 |
|
eqidd |
|
22 |
|
ssidd |
|
23 |
|
eqidd |
|
24 |
21 1 22 4 5 6 23 2 7 8
|
lsppropd |
|
25 |
24
|
fveq1d |
|
26 |
25
|
ad3antrrr |
|
27 |
20 26
|
eleq12d |
|
28 |
27
|
notbid |
|
29 |
12 28
|
raleqbidva |
|
30 |
29
|
ralbidva |
|
31 |
30
|
pm5.32da |
|
32 |
1
|
feq3d |
|
33 |
32
|
anbi1d |
|
34 |
31 33
|
bitrd |
|
35 |
|
eqid |
|
36 |
|
eqid |
|
37 |
|
eqid |
|
38 |
|
eqid |
|
39 |
|
eqid |
|
40 |
|
eqid |
|
41 |
35 36 37 38 39 40
|
islindf |
|
42 |
7 9 41
|
syl2anc |
|
43 |
|
eqid |
|
44 |
|
eqid |
|
45 |
|
eqid |
|
46 |
|
eqid |
|
47 |
|
eqid |
|
48 |
|
eqid |
|
49 |
43 44 45 46 47 48
|
islindf |
|
50 |
8 9 49
|
syl2anc |
|
51 |
34 42 50
|
3bitr4d |
|