Metamath Proof Explorer


Theorem lindfpropd

Description: Property deduction for linearly independent families. (Contributed by Thierry Arnoux, 16-Jul-2023)

Ref Expression
Hypotheses lindfpropd.1 φ Base K = Base L
lindfpropd.2 φ Base Scalar K = Base Scalar L
lindfpropd.3 φ 0 Scalar K = 0 Scalar L
lindfpropd.4 φ x Base K y Base K x + K y = x + L y
lindfpropd.5 φ x Base Scalar K y Base K x K y Base K
lindfpropd.6 φ x Base Scalar K y Base K x K y = x L y
lindfpropd.k φ K V
lindfpropd.l φ L W
lindfpropd.x φ X A
Assertion lindfpropd φ X LIndF K X LIndF L

Proof

Step Hyp Ref Expression
1 lindfpropd.1 φ Base K = Base L
2 lindfpropd.2 φ Base Scalar K = Base Scalar L
3 lindfpropd.3 φ 0 Scalar K = 0 Scalar L
4 lindfpropd.4 φ x Base K y Base K x + K y = x + L y
5 lindfpropd.5 φ x Base Scalar K y Base K x K y Base K
6 lindfpropd.6 φ x Base Scalar K y Base K x K y = x L y
7 lindfpropd.k φ K V
8 lindfpropd.l φ L W
9 lindfpropd.x φ X A
10 3 sneqd φ 0 Scalar K = 0 Scalar L
11 2 10 difeq12d φ Base Scalar K 0 Scalar K = Base Scalar L 0 Scalar L
12 11 ad2antrr φ X : dom X Base K i dom X Base Scalar K 0 Scalar K = Base Scalar L 0 Scalar L
13 simplll φ X : dom X Base K i dom X k Base Scalar K 0 Scalar K φ
14 simpr φ X : dom X Base K i dom X k Base Scalar K 0 Scalar K k Base Scalar K 0 Scalar K
15 14 eldifad φ X : dom X Base K i dom X k Base Scalar K 0 Scalar K k Base Scalar K
16 simpr φ X : dom X Base K X : dom X Base K
17 16 ffvelrnda φ X : dom X Base K i dom X X i Base K
18 17 adantr φ X : dom X Base K i dom X k Base Scalar K 0 Scalar K X i Base K
19 6 oveqrspc2v φ k Base Scalar K X i Base K k K X i = k L X i
20 13 15 18 19 syl12anc φ X : dom X Base K i dom X k Base Scalar K 0 Scalar K k K X i = k L X i
21 eqidd φ Base K = Base K
22 ssidd φ Base K Base K
23 eqidd φ Base Scalar K = Base Scalar K
24 21 1 22 4 5 6 23 2 7 8 lsppropd φ LSpan K = LSpan L
25 24 fveq1d φ LSpan K X dom X i = LSpan L X dom X i
26 25 ad3antrrr φ X : dom X Base K i dom X k Base Scalar K 0 Scalar K LSpan K X dom X i = LSpan L X dom X i
27 20 26 eleq12d φ X : dom X Base K i dom X k Base Scalar K 0 Scalar K k K X i LSpan K X dom X i k L X i LSpan L X dom X i
28 27 notbid φ X : dom X Base K i dom X k Base Scalar K 0 Scalar K ¬ k K X i LSpan K X dom X i ¬ k L X i LSpan L X dom X i
29 12 28 raleqbidva φ X : dom X Base K i dom X k Base Scalar K 0 Scalar K ¬ k K X i LSpan K X dom X i k Base Scalar L 0 Scalar L ¬ k L X i LSpan L X dom X i
30 29 ralbidva φ X : dom X Base K i dom X k Base Scalar K 0 Scalar K ¬ k K X i LSpan K X dom X i i dom X k Base Scalar L 0 Scalar L ¬ k L X i LSpan L X dom X i
31 30 pm5.32da φ X : dom X Base K i dom X k Base Scalar K 0 Scalar K ¬ k K X i LSpan K X dom X i X : dom X Base K i dom X k Base Scalar L 0 Scalar L ¬ k L X i LSpan L X dom X i
32 1 feq3d φ X : dom X Base K X : dom X Base L
33 32 anbi1d φ X : dom X Base K i dom X k Base Scalar L 0 Scalar L ¬ k L X i LSpan L X dom X i X : dom X Base L i dom X k Base Scalar L 0 Scalar L ¬ k L X i LSpan L X dom X i
34 31 33 bitrd φ X : dom X Base K i dom X k Base Scalar K 0 Scalar K ¬ k K X i LSpan K X dom X i X : dom X Base L i dom X k Base Scalar L 0 Scalar L ¬ k L X i LSpan L X dom X i
35 eqid Base K = Base K
36 eqid K = K
37 eqid LSpan K = LSpan K
38 eqid Scalar K = Scalar K
39 eqid Base Scalar K = Base Scalar K
40 eqid 0 Scalar K = 0 Scalar K
41 35 36 37 38 39 40 islindf K V X A X LIndF K X : dom X Base K i dom X k Base Scalar K 0 Scalar K ¬ k K X i LSpan K X dom X i
42 7 9 41 syl2anc φ X LIndF K X : dom X Base K i dom X k Base Scalar K 0 Scalar K ¬ k K X i LSpan K X dom X i
43 eqid Base L = Base L
44 eqid L = L
45 eqid LSpan L = LSpan L
46 eqid Scalar L = Scalar L
47 eqid Base Scalar L = Base Scalar L
48 eqid 0 Scalar L = 0 Scalar L
49 43 44 45 46 47 48 islindf L W X A X LIndF L X : dom X Base L i dom X k Base Scalar L 0 Scalar L ¬ k L X i LSpan L X dom X i
50 8 9 49 syl2anc φ X LIndF L X : dom X Base L i dom X k Base Scalar L 0 Scalar L ¬ k L X i LSpan L X dom X i
51 34 42 50 3bitr4d φ X LIndF K X LIndF L