Metamath Proof Explorer


Theorem lindfpropd

Description: Property deduction for linearly independent families. (Contributed by Thierry Arnoux, 16-Jul-2023)

Ref Expression
Hypotheses lindfpropd.1 φBaseK=BaseL
lindfpropd.2 φBaseScalarK=BaseScalarL
lindfpropd.3 φ0ScalarK=0ScalarL
lindfpropd.4 φxBaseKyBaseKx+Ky=x+Ly
lindfpropd.5 φxBaseScalarKyBaseKxKyBaseK
lindfpropd.6 φxBaseScalarKyBaseKxKy=xLy
lindfpropd.k φKV
lindfpropd.l φLW
lindfpropd.x φXA
Assertion lindfpropd φXLIndFKXLIndFL

Proof

Step Hyp Ref Expression
1 lindfpropd.1 φBaseK=BaseL
2 lindfpropd.2 φBaseScalarK=BaseScalarL
3 lindfpropd.3 φ0ScalarK=0ScalarL
4 lindfpropd.4 φxBaseKyBaseKx+Ky=x+Ly
5 lindfpropd.5 φxBaseScalarKyBaseKxKyBaseK
6 lindfpropd.6 φxBaseScalarKyBaseKxKy=xLy
7 lindfpropd.k φKV
8 lindfpropd.l φLW
9 lindfpropd.x φXA
10 3 sneqd φ0ScalarK=0ScalarL
11 2 10 difeq12d φBaseScalarK0ScalarK=BaseScalarL0ScalarL
12 11 ad2antrr φX:domXBaseKidomXBaseScalarK0ScalarK=BaseScalarL0ScalarL
13 simplll φX:domXBaseKidomXkBaseScalarK0ScalarKφ
14 simpr φX:domXBaseKidomXkBaseScalarK0ScalarKkBaseScalarK0ScalarK
15 14 eldifad φX:domXBaseKidomXkBaseScalarK0ScalarKkBaseScalarK
16 simpr φX:domXBaseKX:domXBaseK
17 16 ffvelcdmda φX:domXBaseKidomXXiBaseK
18 17 adantr φX:domXBaseKidomXkBaseScalarK0ScalarKXiBaseK
19 6 oveqrspc2v φkBaseScalarKXiBaseKkKXi=kLXi
20 13 15 18 19 syl12anc φX:domXBaseKidomXkBaseScalarK0ScalarKkKXi=kLXi
21 eqidd φBaseK=BaseK
22 ssidd φBaseKBaseK
23 eqidd φBaseScalarK=BaseScalarK
24 21 1 22 4 5 6 23 2 7 8 lsppropd φLSpanK=LSpanL
25 24 fveq1d φLSpanKXdomXi=LSpanLXdomXi
26 25 ad3antrrr φX:domXBaseKidomXkBaseScalarK0ScalarKLSpanKXdomXi=LSpanLXdomXi
27 20 26 eleq12d φX:domXBaseKidomXkBaseScalarK0ScalarKkKXiLSpanKXdomXikLXiLSpanLXdomXi
28 27 notbid φX:domXBaseKidomXkBaseScalarK0ScalarK¬kKXiLSpanKXdomXi¬kLXiLSpanLXdomXi
29 12 28 raleqbidva φX:domXBaseKidomXkBaseScalarK0ScalarK¬kKXiLSpanKXdomXikBaseScalarL0ScalarL¬kLXiLSpanLXdomXi
30 29 ralbidva φX:domXBaseKidomXkBaseScalarK0ScalarK¬kKXiLSpanKXdomXiidomXkBaseScalarL0ScalarL¬kLXiLSpanLXdomXi
31 30 pm5.32da φX:domXBaseKidomXkBaseScalarK0ScalarK¬kKXiLSpanKXdomXiX:domXBaseKidomXkBaseScalarL0ScalarL¬kLXiLSpanLXdomXi
32 1 feq3d φX:domXBaseKX:domXBaseL
33 32 anbi1d φX:domXBaseKidomXkBaseScalarL0ScalarL¬kLXiLSpanLXdomXiX:domXBaseLidomXkBaseScalarL0ScalarL¬kLXiLSpanLXdomXi
34 31 33 bitrd φX:domXBaseKidomXkBaseScalarK0ScalarK¬kKXiLSpanKXdomXiX:domXBaseLidomXkBaseScalarL0ScalarL¬kLXiLSpanLXdomXi
35 eqid BaseK=BaseK
36 eqid K=K
37 eqid LSpanK=LSpanK
38 eqid ScalarK=ScalarK
39 eqid BaseScalarK=BaseScalarK
40 eqid 0ScalarK=0ScalarK
41 35 36 37 38 39 40 islindf KVXAXLIndFKX:domXBaseKidomXkBaseScalarK0ScalarK¬kKXiLSpanKXdomXi
42 7 9 41 syl2anc φXLIndFKX:domXBaseKidomXkBaseScalarK0ScalarK¬kKXiLSpanKXdomXi
43 eqid BaseL=BaseL
44 eqid L=L
45 eqid LSpanL=LSpanL
46 eqid ScalarL=ScalarL
47 eqid BaseScalarL=BaseScalarL
48 eqid 0ScalarL=0ScalarL
49 43 44 45 46 47 48 islindf LWXAXLIndFLX:domXBaseLidomXkBaseScalarL0ScalarL¬kLXiLSpanLXdomXi
50 8 9 49 syl2anc φXLIndFLX:domXBaseLidomXkBaseScalarL0ScalarL¬kLXiLSpanLXdomXi
51 34 42 50 3bitr4d φXLIndFKXLIndFL