Description: Property deduction for linearly independent families. (Contributed by Thierry Arnoux, 16-Jul-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lindfpropd.1 | |
|
lindfpropd.2 | |
||
lindfpropd.3 | |
||
lindfpropd.4 | |
||
lindfpropd.5 | |
||
lindfpropd.6 | |
||
lindfpropd.k | |
||
lindfpropd.l | |
||
lindfpropd.x | |
||
Assertion | lindfpropd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lindfpropd.1 | |
|
2 | lindfpropd.2 | |
|
3 | lindfpropd.3 | |
|
4 | lindfpropd.4 | |
|
5 | lindfpropd.5 | |
|
6 | lindfpropd.6 | |
|
7 | lindfpropd.k | |
|
8 | lindfpropd.l | |
|
9 | lindfpropd.x | |
|
10 | 3 | sneqd | |
11 | 2 10 | difeq12d | |
12 | 11 | ad2antrr | |
13 | simplll | |
|
14 | simpr | |
|
15 | 14 | eldifad | |
16 | simpr | |
|
17 | 16 | ffvelcdmda | |
18 | 17 | adantr | |
19 | 6 | oveqrspc2v | |
20 | 13 15 18 19 | syl12anc | |
21 | eqidd | |
|
22 | ssidd | |
|
23 | eqidd | |
|
24 | 21 1 22 4 5 6 23 2 7 8 | lsppropd | |
25 | 24 | fveq1d | |
26 | 25 | ad3antrrr | |
27 | 20 26 | eleq12d | |
28 | 27 | notbid | |
29 | 12 28 | raleqbidva | |
30 | 29 | ralbidva | |
31 | 30 | pm5.32da | |
32 | 1 | feq3d | |
33 | 32 | anbi1d | |
34 | 31 33 | bitrd | |
35 | eqid | |
|
36 | eqid | |
|
37 | eqid | |
|
38 | eqid | |
|
39 | eqid | |
|
40 | eqid | |
|
41 | 35 36 37 38 39 40 | islindf | |
42 | 7 9 41 | syl2anc | |
43 | eqid | |
|
44 | eqid | |
|
45 | eqid | |
|
46 | eqid | |
|
47 | eqid | |
|
48 | eqid | |
|
49 | 43 44 45 46 47 48 | islindf | |
50 | 8 9 49 | syl2anc | |
51 | 34 42 50 | 3bitr4d | |