| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lindfpropd.1 |
|
| 2 |
|
lindfpropd.2 |
|
| 3 |
|
lindfpropd.3 |
|
| 4 |
|
lindfpropd.4 |
|
| 5 |
|
lindfpropd.5 |
|
| 6 |
|
lindfpropd.6 |
|
| 7 |
|
lindfpropd.k |
|
| 8 |
|
lindfpropd.l |
|
| 9 |
|
lindfpropd.x |
|
| 10 |
3
|
sneqd |
|
| 11 |
2 10
|
difeq12d |
|
| 12 |
11
|
ad2antrr |
|
| 13 |
|
simplll |
|
| 14 |
|
simpr |
|
| 15 |
14
|
eldifad |
|
| 16 |
|
simpr |
|
| 17 |
16
|
ffvelcdmda |
|
| 18 |
17
|
adantr |
|
| 19 |
6
|
oveqrspc2v |
|
| 20 |
13 15 18 19
|
syl12anc |
|
| 21 |
|
eqidd |
|
| 22 |
|
ssidd |
|
| 23 |
|
eqidd |
|
| 24 |
21 1 22 4 5 6 23 2 7 8
|
lsppropd |
|
| 25 |
24
|
fveq1d |
|
| 26 |
25
|
ad3antrrr |
|
| 27 |
20 26
|
eleq12d |
|
| 28 |
27
|
notbid |
|
| 29 |
12 28
|
raleqbidva |
|
| 30 |
29
|
ralbidva |
|
| 31 |
30
|
pm5.32da |
|
| 32 |
1
|
feq3d |
|
| 33 |
32
|
anbi1d |
|
| 34 |
31 33
|
bitrd |
|
| 35 |
|
eqid |
|
| 36 |
|
eqid |
|
| 37 |
|
eqid |
|
| 38 |
|
eqid |
|
| 39 |
|
eqid |
|
| 40 |
|
eqid |
|
| 41 |
35 36 37 38 39 40
|
islindf |
|
| 42 |
7 9 41
|
syl2anc |
|
| 43 |
|
eqid |
|
| 44 |
|
eqid |
|
| 45 |
|
eqid |
|
| 46 |
|
eqid |
|
| 47 |
|
eqid |
|
| 48 |
|
eqid |
|
| 49 |
43 44 45 46 47 48
|
islindf |
|
| 50 |
8 9 49
|
syl2anc |
|
| 51 |
34 42 50
|
3bitr4d |
|