| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lindfpropd.1 |
|- ( ph -> ( Base ` K ) = ( Base ` L ) ) |
| 2 |
|
lindfpropd.2 |
|- ( ph -> ( Base ` ( Scalar ` K ) ) = ( Base ` ( Scalar ` L ) ) ) |
| 3 |
|
lindfpropd.3 |
|- ( ph -> ( 0g ` ( Scalar ` K ) ) = ( 0g ` ( Scalar ` L ) ) ) |
| 4 |
|
lindfpropd.4 |
|- ( ( ph /\ ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
| 5 |
|
lindfpropd.5 |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` K ) ) /\ y e. ( Base ` K ) ) ) -> ( x ( .s ` K ) y ) e. ( Base ` K ) ) |
| 6 |
|
lindfpropd.6 |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` K ) ) /\ y e. ( Base ` K ) ) ) -> ( x ( .s ` K ) y ) = ( x ( .s ` L ) y ) ) |
| 7 |
|
lindfpropd.k |
|- ( ph -> K e. V ) |
| 8 |
|
lindfpropd.l |
|- ( ph -> L e. W ) |
| 9 |
|
lindfpropd.x |
|- ( ph -> X e. A ) |
| 10 |
3
|
sneqd |
|- ( ph -> { ( 0g ` ( Scalar ` K ) ) } = { ( 0g ` ( Scalar ` L ) ) } ) |
| 11 |
2 10
|
difeq12d |
|- ( ph -> ( ( Base ` ( Scalar ` K ) ) \ { ( 0g ` ( Scalar ` K ) ) } ) = ( ( Base ` ( Scalar ` L ) ) \ { ( 0g ` ( Scalar ` L ) ) } ) ) |
| 12 |
11
|
ad2antrr |
|- ( ( ( ph /\ X : dom X --> ( Base ` K ) ) /\ i e. dom X ) -> ( ( Base ` ( Scalar ` K ) ) \ { ( 0g ` ( Scalar ` K ) ) } ) = ( ( Base ` ( Scalar ` L ) ) \ { ( 0g ` ( Scalar ` L ) ) } ) ) |
| 13 |
|
simplll |
|- ( ( ( ( ph /\ X : dom X --> ( Base ` K ) ) /\ i e. dom X ) /\ k e. ( ( Base ` ( Scalar ` K ) ) \ { ( 0g ` ( Scalar ` K ) ) } ) ) -> ph ) |
| 14 |
|
simpr |
|- ( ( ( ( ph /\ X : dom X --> ( Base ` K ) ) /\ i e. dom X ) /\ k e. ( ( Base ` ( Scalar ` K ) ) \ { ( 0g ` ( Scalar ` K ) ) } ) ) -> k e. ( ( Base ` ( Scalar ` K ) ) \ { ( 0g ` ( Scalar ` K ) ) } ) ) |
| 15 |
14
|
eldifad |
|- ( ( ( ( ph /\ X : dom X --> ( Base ` K ) ) /\ i e. dom X ) /\ k e. ( ( Base ` ( Scalar ` K ) ) \ { ( 0g ` ( Scalar ` K ) ) } ) ) -> k e. ( Base ` ( Scalar ` K ) ) ) |
| 16 |
|
simpr |
|- ( ( ph /\ X : dom X --> ( Base ` K ) ) -> X : dom X --> ( Base ` K ) ) |
| 17 |
16
|
ffvelcdmda |
|- ( ( ( ph /\ X : dom X --> ( Base ` K ) ) /\ i e. dom X ) -> ( X ` i ) e. ( Base ` K ) ) |
| 18 |
17
|
adantr |
|- ( ( ( ( ph /\ X : dom X --> ( Base ` K ) ) /\ i e. dom X ) /\ k e. ( ( Base ` ( Scalar ` K ) ) \ { ( 0g ` ( Scalar ` K ) ) } ) ) -> ( X ` i ) e. ( Base ` K ) ) |
| 19 |
6
|
oveqrspc2v |
|- ( ( ph /\ ( k e. ( Base ` ( Scalar ` K ) ) /\ ( X ` i ) e. ( Base ` K ) ) ) -> ( k ( .s ` K ) ( X ` i ) ) = ( k ( .s ` L ) ( X ` i ) ) ) |
| 20 |
13 15 18 19
|
syl12anc |
|- ( ( ( ( ph /\ X : dom X --> ( Base ` K ) ) /\ i e. dom X ) /\ k e. ( ( Base ` ( Scalar ` K ) ) \ { ( 0g ` ( Scalar ` K ) ) } ) ) -> ( k ( .s ` K ) ( X ` i ) ) = ( k ( .s ` L ) ( X ` i ) ) ) |
| 21 |
|
eqidd |
|- ( ph -> ( Base ` K ) = ( Base ` K ) ) |
| 22 |
|
ssidd |
|- ( ph -> ( Base ` K ) C_ ( Base ` K ) ) |
| 23 |
|
eqidd |
|- ( ph -> ( Base ` ( Scalar ` K ) ) = ( Base ` ( Scalar ` K ) ) ) |
| 24 |
21 1 22 4 5 6 23 2 7 8
|
lsppropd |
|- ( ph -> ( LSpan ` K ) = ( LSpan ` L ) ) |
| 25 |
24
|
fveq1d |
|- ( ph -> ( ( LSpan ` K ) ` ( X " ( dom X \ { i } ) ) ) = ( ( LSpan ` L ) ` ( X " ( dom X \ { i } ) ) ) ) |
| 26 |
25
|
ad3antrrr |
|- ( ( ( ( ph /\ X : dom X --> ( Base ` K ) ) /\ i e. dom X ) /\ k e. ( ( Base ` ( Scalar ` K ) ) \ { ( 0g ` ( Scalar ` K ) ) } ) ) -> ( ( LSpan ` K ) ` ( X " ( dom X \ { i } ) ) ) = ( ( LSpan ` L ) ` ( X " ( dom X \ { i } ) ) ) ) |
| 27 |
20 26
|
eleq12d |
|- ( ( ( ( ph /\ X : dom X --> ( Base ` K ) ) /\ i e. dom X ) /\ k e. ( ( Base ` ( Scalar ` K ) ) \ { ( 0g ` ( Scalar ` K ) ) } ) ) -> ( ( k ( .s ` K ) ( X ` i ) ) e. ( ( LSpan ` K ) ` ( X " ( dom X \ { i } ) ) ) <-> ( k ( .s ` L ) ( X ` i ) ) e. ( ( LSpan ` L ) ` ( X " ( dom X \ { i } ) ) ) ) ) |
| 28 |
27
|
notbid |
|- ( ( ( ( ph /\ X : dom X --> ( Base ` K ) ) /\ i e. dom X ) /\ k e. ( ( Base ` ( Scalar ` K ) ) \ { ( 0g ` ( Scalar ` K ) ) } ) ) -> ( -. ( k ( .s ` K ) ( X ` i ) ) e. ( ( LSpan ` K ) ` ( X " ( dom X \ { i } ) ) ) <-> -. ( k ( .s ` L ) ( X ` i ) ) e. ( ( LSpan ` L ) ` ( X " ( dom X \ { i } ) ) ) ) ) |
| 29 |
12 28
|
raleqbidva |
|- ( ( ( ph /\ X : dom X --> ( Base ` K ) ) /\ i e. dom X ) -> ( A. k e. ( ( Base ` ( Scalar ` K ) ) \ { ( 0g ` ( Scalar ` K ) ) } ) -. ( k ( .s ` K ) ( X ` i ) ) e. ( ( LSpan ` K ) ` ( X " ( dom X \ { i } ) ) ) <-> A. k e. ( ( Base ` ( Scalar ` L ) ) \ { ( 0g ` ( Scalar ` L ) ) } ) -. ( k ( .s ` L ) ( X ` i ) ) e. ( ( LSpan ` L ) ` ( X " ( dom X \ { i } ) ) ) ) ) |
| 30 |
29
|
ralbidva |
|- ( ( ph /\ X : dom X --> ( Base ` K ) ) -> ( A. i e. dom X A. k e. ( ( Base ` ( Scalar ` K ) ) \ { ( 0g ` ( Scalar ` K ) ) } ) -. ( k ( .s ` K ) ( X ` i ) ) e. ( ( LSpan ` K ) ` ( X " ( dom X \ { i } ) ) ) <-> A. i e. dom X A. k e. ( ( Base ` ( Scalar ` L ) ) \ { ( 0g ` ( Scalar ` L ) ) } ) -. ( k ( .s ` L ) ( X ` i ) ) e. ( ( LSpan ` L ) ` ( X " ( dom X \ { i } ) ) ) ) ) |
| 31 |
30
|
pm5.32da |
|- ( ph -> ( ( X : dom X --> ( Base ` K ) /\ A. i e. dom X A. k e. ( ( Base ` ( Scalar ` K ) ) \ { ( 0g ` ( Scalar ` K ) ) } ) -. ( k ( .s ` K ) ( X ` i ) ) e. ( ( LSpan ` K ) ` ( X " ( dom X \ { i } ) ) ) ) <-> ( X : dom X --> ( Base ` K ) /\ A. i e. dom X A. k e. ( ( Base ` ( Scalar ` L ) ) \ { ( 0g ` ( Scalar ` L ) ) } ) -. ( k ( .s ` L ) ( X ` i ) ) e. ( ( LSpan ` L ) ` ( X " ( dom X \ { i } ) ) ) ) ) ) |
| 32 |
1
|
feq3d |
|- ( ph -> ( X : dom X --> ( Base ` K ) <-> X : dom X --> ( Base ` L ) ) ) |
| 33 |
32
|
anbi1d |
|- ( ph -> ( ( X : dom X --> ( Base ` K ) /\ A. i e. dom X A. k e. ( ( Base ` ( Scalar ` L ) ) \ { ( 0g ` ( Scalar ` L ) ) } ) -. ( k ( .s ` L ) ( X ` i ) ) e. ( ( LSpan ` L ) ` ( X " ( dom X \ { i } ) ) ) ) <-> ( X : dom X --> ( Base ` L ) /\ A. i e. dom X A. k e. ( ( Base ` ( Scalar ` L ) ) \ { ( 0g ` ( Scalar ` L ) ) } ) -. ( k ( .s ` L ) ( X ` i ) ) e. ( ( LSpan ` L ) ` ( X " ( dom X \ { i } ) ) ) ) ) ) |
| 34 |
31 33
|
bitrd |
|- ( ph -> ( ( X : dom X --> ( Base ` K ) /\ A. i e. dom X A. k e. ( ( Base ` ( Scalar ` K ) ) \ { ( 0g ` ( Scalar ` K ) ) } ) -. ( k ( .s ` K ) ( X ` i ) ) e. ( ( LSpan ` K ) ` ( X " ( dom X \ { i } ) ) ) ) <-> ( X : dom X --> ( Base ` L ) /\ A. i e. dom X A. k e. ( ( Base ` ( Scalar ` L ) ) \ { ( 0g ` ( Scalar ` L ) ) } ) -. ( k ( .s ` L ) ( X ` i ) ) e. ( ( LSpan ` L ) ` ( X " ( dom X \ { i } ) ) ) ) ) ) |
| 35 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 36 |
|
eqid |
|- ( .s ` K ) = ( .s ` K ) |
| 37 |
|
eqid |
|- ( LSpan ` K ) = ( LSpan ` K ) |
| 38 |
|
eqid |
|- ( Scalar ` K ) = ( Scalar ` K ) |
| 39 |
|
eqid |
|- ( Base ` ( Scalar ` K ) ) = ( Base ` ( Scalar ` K ) ) |
| 40 |
|
eqid |
|- ( 0g ` ( Scalar ` K ) ) = ( 0g ` ( Scalar ` K ) ) |
| 41 |
35 36 37 38 39 40
|
islindf |
|- ( ( K e. V /\ X e. A ) -> ( X LIndF K <-> ( X : dom X --> ( Base ` K ) /\ A. i e. dom X A. k e. ( ( Base ` ( Scalar ` K ) ) \ { ( 0g ` ( Scalar ` K ) ) } ) -. ( k ( .s ` K ) ( X ` i ) ) e. ( ( LSpan ` K ) ` ( X " ( dom X \ { i } ) ) ) ) ) ) |
| 42 |
7 9 41
|
syl2anc |
|- ( ph -> ( X LIndF K <-> ( X : dom X --> ( Base ` K ) /\ A. i e. dom X A. k e. ( ( Base ` ( Scalar ` K ) ) \ { ( 0g ` ( Scalar ` K ) ) } ) -. ( k ( .s ` K ) ( X ` i ) ) e. ( ( LSpan ` K ) ` ( X " ( dom X \ { i } ) ) ) ) ) ) |
| 43 |
|
eqid |
|- ( Base ` L ) = ( Base ` L ) |
| 44 |
|
eqid |
|- ( .s ` L ) = ( .s ` L ) |
| 45 |
|
eqid |
|- ( LSpan ` L ) = ( LSpan ` L ) |
| 46 |
|
eqid |
|- ( Scalar ` L ) = ( Scalar ` L ) |
| 47 |
|
eqid |
|- ( Base ` ( Scalar ` L ) ) = ( Base ` ( Scalar ` L ) ) |
| 48 |
|
eqid |
|- ( 0g ` ( Scalar ` L ) ) = ( 0g ` ( Scalar ` L ) ) |
| 49 |
43 44 45 46 47 48
|
islindf |
|- ( ( L e. W /\ X e. A ) -> ( X LIndF L <-> ( X : dom X --> ( Base ` L ) /\ A. i e. dom X A. k e. ( ( Base ` ( Scalar ` L ) ) \ { ( 0g ` ( Scalar ` L ) ) } ) -. ( k ( .s ` L ) ( X ` i ) ) e. ( ( LSpan ` L ) ` ( X " ( dom X \ { i } ) ) ) ) ) ) |
| 50 |
8 9 49
|
syl2anc |
|- ( ph -> ( X LIndF L <-> ( X : dom X --> ( Base ` L ) /\ A. i e. dom X A. k e. ( ( Base ` ( Scalar ` L ) ) \ { ( 0g ` ( Scalar ` L ) ) } ) -. ( k ( .s ` L ) ( X ` i ) ) e. ( ( LSpan ` L ) ` ( X " ( dom X \ { i } ) ) ) ) ) ) |
| 51 |
34 42 50
|
3bitr4d |
|- ( ph -> ( X LIndF K <-> X LIndF L ) ) |