Step |
Hyp |
Ref |
Expression |
1 |
|
lindfpropd.1 |
|- ( ph -> ( Base ` K ) = ( Base ` L ) ) |
2 |
|
lindfpropd.2 |
|- ( ph -> ( Base ` ( Scalar ` K ) ) = ( Base ` ( Scalar ` L ) ) ) |
3 |
|
lindfpropd.3 |
|- ( ph -> ( 0g ` ( Scalar ` K ) ) = ( 0g ` ( Scalar ` L ) ) ) |
4 |
|
lindfpropd.4 |
|- ( ( ph /\ ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
5 |
|
lindfpropd.5 |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` K ) ) /\ y e. ( Base ` K ) ) ) -> ( x ( .s ` K ) y ) e. ( Base ` K ) ) |
6 |
|
lindfpropd.6 |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` K ) ) /\ y e. ( Base ` K ) ) ) -> ( x ( .s ` K ) y ) = ( x ( .s ` L ) y ) ) |
7 |
|
lindfpropd.k |
|- ( ph -> K e. V ) |
8 |
|
lindfpropd.l |
|- ( ph -> L e. W ) |
9 |
1
|
sseq2d |
|- ( ph -> ( z C_ ( Base ` K ) <-> z C_ ( Base ` L ) ) ) |
10 |
|
vex |
|- z e. _V |
11 |
10
|
a1i |
|- ( ph -> z e. _V ) |
12 |
11
|
resiexd |
|- ( ph -> ( _I |` z ) e. _V ) |
13 |
1 2 3 4 5 6 7 8 12
|
lindfpropd |
|- ( ph -> ( ( _I |` z ) LIndF K <-> ( _I |` z ) LIndF L ) ) |
14 |
9 13
|
anbi12d |
|- ( ph -> ( ( z C_ ( Base ` K ) /\ ( _I |` z ) LIndF K ) <-> ( z C_ ( Base ` L ) /\ ( _I |` z ) LIndF L ) ) ) |
15 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
16 |
15
|
islinds |
|- ( K e. V -> ( z e. ( LIndS ` K ) <-> ( z C_ ( Base ` K ) /\ ( _I |` z ) LIndF K ) ) ) |
17 |
7 16
|
syl |
|- ( ph -> ( z e. ( LIndS ` K ) <-> ( z C_ ( Base ` K ) /\ ( _I |` z ) LIndF K ) ) ) |
18 |
|
eqid |
|- ( Base ` L ) = ( Base ` L ) |
19 |
18
|
islinds |
|- ( L e. W -> ( z e. ( LIndS ` L ) <-> ( z C_ ( Base ` L ) /\ ( _I |` z ) LIndF L ) ) ) |
20 |
8 19
|
syl |
|- ( ph -> ( z e. ( LIndS ` L ) <-> ( z C_ ( Base ` L ) /\ ( _I |` z ) LIndF L ) ) ) |
21 |
14 17 20
|
3bitr4d |
|- ( ph -> ( z e. ( LIndS ` K ) <-> z e. ( LIndS ` L ) ) ) |
22 |
21
|
eqrdv |
|- ( ph -> ( LIndS ` K ) = ( LIndS ` L ) ) |