| Step |
Hyp |
Ref |
Expression |
| 1 |
|
linds2eq.1 |
|- F = ( Base ` ( Scalar ` W ) ) |
| 2 |
|
linds2eq.2 |
|- .x. = ( .s ` W ) |
| 3 |
|
linds2eq.3 |
|- .+ = ( +g ` W ) |
| 4 |
|
linds2eq.4 |
|- .0. = ( 0g ` ( Scalar ` W ) ) |
| 5 |
|
linds2eq.5 |
|- ( ph -> W e. LVec ) |
| 6 |
|
linds2eq.6 |
|- ( ph -> B e. ( LIndS ` W ) ) |
| 7 |
|
linds2eq.7 |
|- ( ph -> X e. B ) |
| 8 |
|
linds2eq.8 |
|- ( ph -> Y e. B ) |
| 9 |
|
linds2eq.9 |
|- ( ph -> K e. F ) |
| 10 |
|
linds2eq.10 |
|- ( ph -> L e. F ) |
| 11 |
|
linds2eq.11 |
|- ( ph -> K =/= .0. ) |
| 12 |
|
linds2eq.12 |
|- ( ph -> ( K .x. X ) = ( L .x. Y ) ) |
| 13 |
|
simpr |
|- ( ( ph /\ X = Y ) -> X = Y ) |
| 14 |
12
|
adantr |
|- ( ( ph /\ X = Y ) -> ( K .x. X ) = ( L .x. Y ) ) |
| 15 |
13
|
oveq2d |
|- ( ( ph /\ X = Y ) -> ( L .x. X ) = ( L .x. Y ) ) |
| 16 |
14 15
|
eqtr4d |
|- ( ( ph /\ X = Y ) -> ( K .x. X ) = ( L .x. X ) ) |
| 17 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 18 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
| 19 |
|
eqid |
|- ( 0g ` W ) = ( 0g ` W ) |
| 20 |
5
|
adantr |
|- ( ( ph /\ X = Y ) -> W e. LVec ) |
| 21 |
9
|
adantr |
|- ( ( ph /\ X = Y ) -> K e. F ) |
| 22 |
10
|
adantr |
|- ( ( ph /\ X = Y ) -> L e. F ) |
| 23 |
17
|
linds1 |
|- ( B e. ( LIndS ` W ) -> B C_ ( Base ` W ) ) |
| 24 |
6 23
|
syl |
|- ( ph -> B C_ ( Base ` W ) ) |
| 25 |
24 7
|
sseldd |
|- ( ph -> X e. ( Base ` W ) ) |
| 26 |
25
|
adantr |
|- ( ( ph /\ X = Y ) -> X e. ( Base ` W ) ) |
| 27 |
19
|
0nellinds |
|- ( ( W e. LVec /\ B e. ( LIndS ` W ) ) -> -. ( 0g ` W ) e. B ) |
| 28 |
5 6 27
|
syl2anc |
|- ( ph -> -. ( 0g ` W ) e. B ) |
| 29 |
|
nelne2 |
|- ( ( X e. B /\ -. ( 0g ` W ) e. B ) -> X =/= ( 0g ` W ) ) |
| 30 |
7 28 29
|
syl2anc |
|- ( ph -> X =/= ( 0g ` W ) ) |
| 31 |
30
|
adantr |
|- ( ( ph /\ X = Y ) -> X =/= ( 0g ` W ) ) |
| 32 |
17 2 18 1 19 20 21 22 26 31
|
lvecvscan2 |
|- ( ( ph /\ X = Y ) -> ( ( K .x. X ) = ( L .x. X ) <-> K = L ) ) |
| 33 |
16 32
|
mpbid |
|- ( ( ph /\ X = Y ) -> K = L ) |
| 34 |
13 33
|
jca |
|- ( ( ph /\ X = Y ) -> ( X = Y /\ K = L ) ) |
| 35 |
7
|
adantr |
|- ( ( ph /\ X =/= Y ) -> X e. B ) |
| 36 |
9
|
adantr |
|- ( ( ph /\ X =/= Y ) -> K e. F ) |
| 37 |
|
opex |
|- <. X , K >. e. _V |
| 38 |
37
|
a1i |
|- ( ( ph /\ X =/= Y ) -> <. X , K >. e. _V ) |
| 39 |
|
opex |
|- <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. e. _V |
| 40 |
39
|
a1i |
|- ( ( ph /\ X =/= Y ) -> <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. e. _V ) |
| 41 |
|
animorrl |
|- ( ( ph /\ X =/= Y ) -> ( X =/= Y \/ K =/= ( ( invg ` ( Scalar ` W ) ) ` L ) ) ) |
| 42 |
|
opthneg |
|- ( ( X e. B /\ K e. F ) -> ( <. X , K >. =/= <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. <-> ( X =/= Y \/ K =/= ( ( invg ` ( Scalar ` W ) ) ` L ) ) ) ) |
| 43 |
42
|
biimpar |
|- ( ( ( X e. B /\ K e. F ) /\ ( X =/= Y \/ K =/= ( ( invg ` ( Scalar ` W ) ) ` L ) ) ) -> <. X , K >. =/= <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. ) |
| 44 |
35 36 41 43
|
syl21anc |
|- ( ( ph /\ X =/= Y ) -> <. X , K >. =/= <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. ) |
| 45 |
|
animorrl |
|- ( ( ph /\ X =/= Y ) -> ( X =/= Y \/ K =/= .0. ) ) |
| 46 |
|
opthneg |
|- ( ( X e. B /\ K e. F ) -> ( <. X , K >. =/= <. Y , .0. >. <-> ( X =/= Y \/ K =/= .0. ) ) ) |
| 47 |
46
|
biimpar |
|- ( ( ( X e. B /\ K e. F ) /\ ( X =/= Y \/ K =/= .0. ) ) -> <. X , K >. =/= <. Y , .0. >. ) |
| 48 |
35 36 45 47
|
syl21anc |
|- ( ( ph /\ X =/= Y ) -> <. X , K >. =/= <. Y , .0. >. ) |
| 49 |
44 48
|
jca |
|- ( ( ph /\ X =/= Y ) -> ( <. X , K >. =/= <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. /\ <. X , K >. =/= <. Y , .0. >. ) ) |
| 50 |
8
|
adantr |
|- ( ( ph /\ X =/= Y ) -> Y e. B ) |
| 51 |
|
fvexd |
|- ( ( ph /\ X =/= Y ) -> ( ( invg ` ( Scalar ` W ) ) ` L ) e. _V ) |
| 52 |
|
simpr |
|- ( ( ph /\ X =/= Y ) -> X =/= Y ) |
| 53 |
|
fprg |
|- ( ( ( X e. B /\ Y e. B ) /\ ( K e. F /\ ( ( invg ` ( Scalar ` W ) ) ` L ) e. _V ) /\ X =/= Y ) -> { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } : { X , Y } --> { K , ( ( invg ` ( Scalar ` W ) ) ` L ) } ) |
| 54 |
35 50 36 51 52 53
|
syl221anc |
|- ( ( ph /\ X =/= Y ) -> { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } : { X , Y } --> { K , ( ( invg ` ( Scalar ` W ) ) ` L ) } ) |
| 55 |
|
prfi |
|- { X , Y } e. Fin |
| 56 |
55
|
a1i |
|- ( ( ph /\ X =/= Y ) -> { X , Y } e. Fin ) |
| 57 |
4
|
fvexi |
|- .0. e. _V |
| 58 |
57
|
a1i |
|- ( ( ph /\ X =/= Y ) -> .0. e. _V ) |
| 59 |
54 56 58
|
fdmfifsupp |
|- ( ( ph /\ X =/= Y ) -> { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } finSupp .0. ) |
| 60 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
| 61 |
5 60
|
syl |
|- ( ph -> W e. LMod ) |
| 62 |
|
lmodcmn |
|- ( W e. LMod -> W e. CMnd ) |
| 63 |
61 62
|
syl |
|- ( ph -> W e. CMnd ) |
| 64 |
63
|
adantr |
|- ( ( ph /\ X =/= Y ) -> W e. CMnd ) |
| 65 |
61
|
adantr |
|- ( ( ph /\ X =/= Y ) -> W e. LMod ) |
| 66 |
18
|
lmodring |
|- ( W e. LMod -> ( Scalar ` W ) e. Ring ) |
| 67 |
|
ringgrp |
|- ( ( Scalar ` W ) e. Ring -> ( Scalar ` W ) e. Grp ) |
| 68 |
61 66 67
|
3syl |
|- ( ph -> ( Scalar ` W ) e. Grp ) |
| 69 |
|
eqid |
|- ( invg ` ( Scalar ` W ) ) = ( invg ` ( Scalar ` W ) ) |
| 70 |
1 69
|
grpinvcl |
|- ( ( ( Scalar ` W ) e. Grp /\ L e. F ) -> ( ( invg ` ( Scalar ` W ) ) ` L ) e. F ) |
| 71 |
68 10 70
|
syl2anc |
|- ( ph -> ( ( invg ` ( Scalar ` W ) ) ` L ) e. F ) |
| 72 |
9 71
|
prssd |
|- ( ph -> { K , ( ( invg ` ( Scalar ` W ) ) ` L ) } C_ F ) |
| 73 |
72
|
adantr |
|- ( ( ph /\ X =/= Y ) -> { K , ( ( invg ` ( Scalar ` W ) ) ` L ) } C_ F ) |
| 74 |
54 73
|
fssd |
|- ( ( ph /\ X =/= Y ) -> { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } : { X , Y } --> F ) |
| 75 |
|
eqidd |
|- ( ( ph /\ X =/= Y ) -> X = X ) |
| 76 |
75
|
orcd |
|- ( ( ph /\ X =/= Y ) -> ( X = X \/ X = Y ) ) |
| 77 |
|
elprg |
|- ( X e. B -> ( X e. { X , Y } <-> ( X = X \/ X = Y ) ) ) |
| 78 |
77
|
biimpar |
|- ( ( X e. B /\ ( X = X \/ X = Y ) ) -> X e. { X , Y } ) |
| 79 |
35 76 78
|
syl2anc |
|- ( ( ph /\ X =/= Y ) -> X e. { X , Y } ) |
| 80 |
74 79
|
ffvelcdmd |
|- ( ( ph /\ X =/= Y ) -> ( { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } ` X ) e. F ) |
| 81 |
25
|
adantr |
|- ( ( ph /\ X =/= Y ) -> X e. ( Base ` W ) ) |
| 82 |
17 18 2 1
|
lmodvscl |
|- ( ( W e. LMod /\ ( { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } ` X ) e. F /\ X e. ( Base ` W ) ) -> ( ( { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } ` X ) .x. X ) e. ( Base ` W ) ) |
| 83 |
65 80 81 82
|
syl3anc |
|- ( ( ph /\ X =/= Y ) -> ( ( { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } ` X ) .x. X ) e. ( Base ` W ) ) |
| 84 |
|
eqidd |
|- ( ( ph /\ X =/= Y ) -> Y = Y ) |
| 85 |
84
|
olcd |
|- ( ( ph /\ X =/= Y ) -> ( Y = X \/ Y = Y ) ) |
| 86 |
|
elprg |
|- ( Y e. B -> ( Y e. { X , Y } <-> ( Y = X \/ Y = Y ) ) ) |
| 87 |
86
|
biimpar |
|- ( ( Y e. B /\ ( Y = X \/ Y = Y ) ) -> Y e. { X , Y } ) |
| 88 |
50 85 87
|
syl2anc |
|- ( ( ph /\ X =/= Y ) -> Y e. { X , Y } ) |
| 89 |
74 88
|
ffvelcdmd |
|- ( ( ph /\ X =/= Y ) -> ( { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } ` Y ) e. F ) |
| 90 |
24 8
|
sseldd |
|- ( ph -> Y e. ( Base ` W ) ) |
| 91 |
90
|
adantr |
|- ( ( ph /\ X =/= Y ) -> Y e. ( Base ` W ) ) |
| 92 |
17 18 2 1
|
lmodvscl |
|- ( ( W e. LMod /\ ( { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } ` Y ) e. F /\ Y e. ( Base ` W ) ) -> ( ( { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } ` Y ) .x. Y ) e. ( Base ` W ) ) |
| 93 |
65 89 91 92
|
syl3anc |
|- ( ( ph /\ X =/= Y ) -> ( ( { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } ` Y ) .x. Y ) e. ( Base ` W ) ) |
| 94 |
|
fveq2 |
|- ( b = X -> ( { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } ` b ) = ( { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } ` X ) ) |
| 95 |
|
id |
|- ( b = X -> b = X ) |
| 96 |
94 95
|
oveq12d |
|- ( b = X -> ( ( { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } ` b ) .x. b ) = ( ( { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } ` X ) .x. X ) ) |
| 97 |
|
fveq2 |
|- ( b = Y -> ( { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } ` b ) = ( { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } ` Y ) ) |
| 98 |
|
id |
|- ( b = Y -> b = Y ) |
| 99 |
97 98
|
oveq12d |
|- ( b = Y -> ( ( { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } ` b ) .x. b ) = ( ( { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } ` Y ) .x. Y ) ) |
| 100 |
17 3 96 99
|
gsumpr |
|- ( ( W e. CMnd /\ ( X e. B /\ Y e. B /\ X =/= Y ) /\ ( ( ( { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } ` X ) .x. X ) e. ( Base ` W ) /\ ( ( { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } ` Y ) .x. Y ) e. ( Base ` W ) ) ) -> ( W gsum ( b e. { X , Y } |-> ( ( { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } ` b ) .x. b ) ) ) = ( ( ( { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } ` X ) .x. X ) .+ ( ( { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } ` Y ) .x. Y ) ) ) |
| 101 |
64 35 50 52 83 93 100
|
syl132anc |
|- ( ( ph /\ X =/= Y ) -> ( W gsum ( b e. { X , Y } |-> ( ( { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } ` b ) .x. b ) ) ) = ( ( ( { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } ` X ) .x. X ) .+ ( ( { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } ` Y ) .x. Y ) ) ) |
| 102 |
|
fvpr1g |
|- ( ( X e. B /\ K e. F /\ X =/= Y ) -> ( { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } ` X ) = K ) |
| 103 |
35 36 52 102
|
syl3anc |
|- ( ( ph /\ X =/= Y ) -> ( { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } ` X ) = K ) |
| 104 |
103
|
oveq1d |
|- ( ( ph /\ X =/= Y ) -> ( ( { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } ` X ) .x. X ) = ( K .x. X ) ) |
| 105 |
71
|
adantr |
|- ( ( ph /\ X =/= Y ) -> ( ( invg ` ( Scalar ` W ) ) ` L ) e. F ) |
| 106 |
|
fvpr2g |
|- ( ( Y e. B /\ ( ( invg ` ( Scalar ` W ) ) ` L ) e. F /\ X =/= Y ) -> ( { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } ` Y ) = ( ( invg ` ( Scalar ` W ) ) ` L ) ) |
| 107 |
50 105 52 106
|
syl3anc |
|- ( ( ph /\ X =/= Y ) -> ( { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } ` Y ) = ( ( invg ` ( Scalar ` W ) ) ` L ) ) |
| 108 |
107
|
oveq1d |
|- ( ( ph /\ X =/= Y ) -> ( ( { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } ` Y ) .x. Y ) = ( ( ( invg ` ( Scalar ` W ) ) ` L ) .x. Y ) ) |
| 109 |
104 108
|
oveq12d |
|- ( ( ph /\ X =/= Y ) -> ( ( ( { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } ` X ) .x. X ) .+ ( ( { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } ` Y ) .x. Y ) ) = ( ( K .x. X ) .+ ( ( ( invg ` ( Scalar ` W ) ) ` L ) .x. Y ) ) ) |
| 110 |
17 18 2 1
|
lmodvscl |
|- ( ( W e. LMod /\ K e. F /\ X e. ( Base ` W ) ) -> ( K .x. X ) e. ( Base ` W ) ) |
| 111 |
61 9 25 110
|
syl3anc |
|- ( ph -> ( K .x. X ) e. ( Base ` W ) ) |
| 112 |
12 111
|
eqeltrrd |
|- ( ph -> ( L .x. Y ) e. ( Base ` W ) ) |
| 113 |
|
eqid |
|- ( invg ` W ) = ( invg ` W ) |
| 114 |
|
eqid |
|- ( -g ` W ) = ( -g ` W ) |
| 115 |
17 3 113 114
|
grpsubval |
|- ( ( ( K .x. X ) e. ( Base ` W ) /\ ( L .x. Y ) e. ( Base ` W ) ) -> ( ( K .x. X ) ( -g ` W ) ( L .x. Y ) ) = ( ( K .x. X ) .+ ( ( invg ` W ) ` ( L .x. Y ) ) ) ) |
| 116 |
111 112 115
|
syl2anc |
|- ( ph -> ( ( K .x. X ) ( -g ` W ) ( L .x. Y ) ) = ( ( K .x. X ) .+ ( ( invg ` W ) ` ( L .x. Y ) ) ) ) |
| 117 |
|
lmodgrp |
|- ( W e. LMod -> W e. Grp ) |
| 118 |
61 117
|
syl |
|- ( ph -> W e. Grp ) |
| 119 |
17 19 114
|
grpsubeq0 |
|- ( ( W e. Grp /\ ( K .x. X ) e. ( Base ` W ) /\ ( L .x. Y ) e. ( Base ` W ) ) -> ( ( ( K .x. X ) ( -g ` W ) ( L .x. Y ) ) = ( 0g ` W ) <-> ( K .x. X ) = ( L .x. Y ) ) ) |
| 120 |
118 111 112 119
|
syl3anc |
|- ( ph -> ( ( ( K .x. X ) ( -g ` W ) ( L .x. Y ) ) = ( 0g ` W ) <-> ( K .x. X ) = ( L .x. Y ) ) ) |
| 121 |
12 120
|
mpbird |
|- ( ph -> ( ( K .x. X ) ( -g ` W ) ( L .x. Y ) ) = ( 0g ` W ) ) |
| 122 |
17 18 2 113 1 69 61 90 10
|
lmodvsneg |
|- ( ph -> ( ( invg ` W ) ` ( L .x. Y ) ) = ( ( ( invg ` ( Scalar ` W ) ) ` L ) .x. Y ) ) |
| 123 |
122
|
oveq2d |
|- ( ph -> ( ( K .x. X ) .+ ( ( invg ` W ) ` ( L .x. Y ) ) ) = ( ( K .x. X ) .+ ( ( ( invg ` ( Scalar ` W ) ) ` L ) .x. Y ) ) ) |
| 124 |
116 121 123
|
3eqtr3rd |
|- ( ph -> ( ( K .x. X ) .+ ( ( ( invg ` ( Scalar ` W ) ) ` L ) .x. Y ) ) = ( 0g ` W ) ) |
| 125 |
124
|
adantr |
|- ( ( ph /\ X =/= Y ) -> ( ( K .x. X ) .+ ( ( ( invg ` ( Scalar ` W ) ) ` L ) .x. Y ) ) = ( 0g ` W ) ) |
| 126 |
101 109 125
|
3eqtrd |
|- ( ( ph /\ X =/= Y ) -> ( W gsum ( b e. { X , Y } |-> ( ( { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } ` b ) .x. b ) ) ) = ( 0g ` W ) ) |
| 127 |
|
breq1 |
|- ( a = { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } -> ( a finSupp .0. <-> { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } finSupp .0. ) ) |
| 128 |
|
fveq1 |
|- ( a = { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } -> ( a ` b ) = ( { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } ` b ) ) |
| 129 |
128
|
oveq1d |
|- ( a = { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } -> ( ( a ` b ) .x. b ) = ( ( { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } ` b ) .x. b ) ) |
| 130 |
129
|
mpteq2dv |
|- ( a = { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } -> ( b e. { X , Y } |-> ( ( a ` b ) .x. b ) ) = ( b e. { X , Y } |-> ( ( { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } ` b ) .x. b ) ) ) |
| 131 |
130
|
oveq2d |
|- ( a = { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } -> ( W gsum ( b e. { X , Y } |-> ( ( a ` b ) .x. b ) ) ) = ( W gsum ( b e. { X , Y } |-> ( ( { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } ` b ) .x. b ) ) ) ) |
| 132 |
131
|
eqeq1d |
|- ( a = { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } -> ( ( W gsum ( b e. { X , Y } |-> ( ( a ` b ) .x. b ) ) ) = ( 0g ` W ) <-> ( W gsum ( b e. { X , Y } |-> ( ( { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } ` b ) .x. b ) ) ) = ( 0g ` W ) ) ) |
| 133 |
127 132
|
anbi12d |
|- ( a = { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } -> ( ( a finSupp .0. /\ ( W gsum ( b e. { X , Y } |-> ( ( a ` b ) .x. b ) ) ) = ( 0g ` W ) ) <-> ( { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } finSupp .0. /\ ( W gsum ( b e. { X , Y } |-> ( ( { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } ` b ) .x. b ) ) ) = ( 0g ` W ) ) ) ) |
| 134 |
|
eqeq1 |
|- ( a = { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } -> ( a = ( { X , Y } X. { .0. } ) <-> { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } = ( { X , Y } X. { .0. } ) ) ) |
| 135 |
133 134
|
imbi12d |
|- ( a = { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } -> ( ( ( a finSupp .0. /\ ( W gsum ( b e. { X , Y } |-> ( ( a ` b ) .x. b ) ) ) = ( 0g ` W ) ) -> a = ( { X , Y } X. { .0. } ) ) <-> ( ( { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } finSupp .0. /\ ( W gsum ( b e. { X , Y } |-> ( ( { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } ` b ) .x. b ) ) ) = ( 0g ` W ) ) -> { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } = ( { X , Y } X. { .0. } ) ) ) ) |
| 136 |
7 8
|
prssd |
|- ( ph -> { X , Y } C_ B ) |
| 137 |
136 24
|
sstrd |
|- ( ph -> { X , Y } C_ ( Base ` W ) ) |
| 138 |
|
lindsss |
|- ( ( W e. LMod /\ B e. ( LIndS ` W ) /\ { X , Y } C_ B ) -> { X , Y } e. ( LIndS ` W ) ) |
| 139 |
61 6 136 138
|
syl3anc |
|- ( ph -> { X , Y } e. ( LIndS ` W ) ) |
| 140 |
17 1 18 2 19 4
|
islinds5 |
|- ( ( W e. LMod /\ { X , Y } C_ ( Base ` W ) ) -> ( { X , Y } e. ( LIndS ` W ) <-> A. a e. ( F ^m { X , Y } ) ( ( a finSupp .0. /\ ( W gsum ( b e. { X , Y } |-> ( ( a ` b ) .x. b ) ) ) = ( 0g ` W ) ) -> a = ( { X , Y } X. { .0. } ) ) ) ) |
| 141 |
140
|
biimpa |
|- ( ( ( W e. LMod /\ { X , Y } C_ ( Base ` W ) ) /\ { X , Y } e. ( LIndS ` W ) ) -> A. a e. ( F ^m { X , Y } ) ( ( a finSupp .0. /\ ( W gsum ( b e. { X , Y } |-> ( ( a ` b ) .x. b ) ) ) = ( 0g ` W ) ) -> a = ( { X , Y } X. { .0. } ) ) ) |
| 142 |
61 137 139 141
|
syl21anc |
|- ( ph -> A. a e. ( F ^m { X , Y } ) ( ( a finSupp .0. /\ ( W gsum ( b e. { X , Y } |-> ( ( a ` b ) .x. b ) ) ) = ( 0g ` W ) ) -> a = ( { X , Y } X. { .0. } ) ) ) |
| 143 |
142
|
adantr |
|- ( ( ph /\ X =/= Y ) -> A. a e. ( F ^m { X , Y } ) ( ( a finSupp .0. /\ ( W gsum ( b e. { X , Y } |-> ( ( a ` b ) .x. b ) ) ) = ( 0g ` W ) ) -> a = ( { X , Y } X. { .0. } ) ) ) |
| 144 |
1
|
fvexi |
|- F e. _V |
| 145 |
144
|
a1i |
|- ( ( ph /\ X =/= Y ) -> F e. _V ) |
| 146 |
139
|
elexd |
|- ( ph -> { X , Y } e. _V ) |
| 147 |
146
|
adantr |
|- ( ( ph /\ X =/= Y ) -> { X , Y } e. _V ) |
| 148 |
145 147
|
elmapd |
|- ( ( ph /\ X =/= Y ) -> ( { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } e. ( F ^m { X , Y } ) <-> { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } : { X , Y } --> F ) ) |
| 149 |
74 148
|
mpbird |
|- ( ( ph /\ X =/= Y ) -> { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } e. ( F ^m { X , Y } ) ) |
| 150 |
135 143 149
|
rspcdva |
|- ( ( ph /\ X =/= Y ) -> ( ( { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } finSupp .0. /\ ( W gsum ( b e. { X , Y } |-> ( ( { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } ` b ) .x. b ) ) ) = ( 0g ` W ) ) -> { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } = ( { X , Y } X. { .0. } ) ) ) |
| 151 |
59 126 150
|
mp2and |
|- ( ( ph /\ X =/= Y ) -> { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } = ( { X , Y } X. { .0. } ) ) |
| 152 |
|
xpprsng |
|- ( ( X e. B /\ Y e. B /\ .0. e. _V ) -> ( { X , Y } X. { .0. } ) = { <. X , .0. >. , <. Y , .0. >. } ) |
| 153 |
35 50 58 152
|
syl3anc |
|- ( ( ph /\ X =/= Y ) -> ( { X , Y } X. { .0. } ) = { <. X , .0. >. , <. Y , .0. >. } ) |
| 154 |
151 153
|
eqtrd |
|- ( ( ph /\ X =/= Y ) -> { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } = { <. X , .0. >. , <. Y , .0. >. } ) |
| 155 |
|
opthprneg |
|- ( ( ( <. X , K >. e. _V /\ <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. e. _V ) /\ ( <. X , K >. =/= <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. /\ <. X , K >. =/= <. Y , .0. >. ) ) -> ( { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } = { <. X , .0. >. , <. Y , .0. >. } <-> ( <. X , K >. = <. X , .0. >. /\ <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. = <. Y , .0. >. ) ) ) |
| 156 |
155
|
biimpa |
|- ( ( ( ( <. X , K >. e. _V /\ <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. e. _V ) /\ ( <. X , K >. =/= <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. /\ <. X , K >. =/= <. Y , .0. >. ) ) /\ { <. X , K >. , <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. } = { <. X , .0. >. , <. Y , .0. >. } ) -> ( <. X , K >. = <. X , .0. >. /\ <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. = <. Y , .0. >. ) ) |
| 157 |
38 40 49 154 156
|
syl1111anc |
|- ( ( ph /\ X =/= Y ) -> ( <. X , K >. = <. X , .0. >. /\ <. Y , ( ( invg ` ( Scalar ` W ) ) ` L ) >. = <. Y , .0. >. ) ) |
| 158 |
157
|
simpld |
|- ( ( ph /\ X =/= Y ) -> <. X , K >. = <. X , .0. >. ) |
| 159 |
|
opthg |
|- ( ( X e. B /\ K e. F ) -> ( <. X , K >. = <. X , .0. >. <-> ( X = X /\ K = .0. ) ) ) |
| 160 |
159
|
simplbda |
|- ( ( ( X e. B /\ K e. F ) /\ <. X , K >. = <. X , .0. >. ) -> K = .0. ) |
| 161 |
35 36 158 160
|
syl21anc |
|- ( ( ph /\ X =/= Y ) -> K = .0. ) |
| 162 |
11
|
adantr |
|- ( ( ph /\ X =/= Y ) -> K =/= .0. ) |
| 163 |
161 162
|
pm2.21ddne |
|- ( ( ph /\ X =/= Y ) -> ( X = Y /\ K = L ) ) |
| 164 |
34 163
|
pm2.61dane |
|- ( ph -> ( X = Y /\ K = L ) ) |