Step |
Hyp |
Ref |
Expression |
1 |
|
islinds5.b |
|- B = ( Base ` W ) |
2 |
|
islinds5.k |
|- K = ( Base ` F ) |
3 |
|
islinds5.r |
|- F = ( Scalar ` W ) |
4 |
|
islinds5.t |
|- .x. = ( .s ` W ) |
5 |
|
islinds5.z |
|- O = ( 0g ` W ) |
6 |
|
islinds5.y |
|- .0. = ( 0g ` F ) |
7 |
1
|
islinds |
|- ( W e. LMod -> ( V e. ( LIndS ` W ) <-> ( V C_ B /\ ( _I |` V ) LIndF W ) ) ) |
8 |
7
|
baibd |
|- ( ( W e. LMod /\ V C_ B ) -> ( V e. ( LIndS ` W ) <-> ( _I |` V ) LIndF W ) ) |
9 |
|
simpl |
|- ( ( W e. LMod /\ V C_ B ) -> W e. LMod ) |
10 |
1
|
fvexi |
|- B e. _V |
11 |
10
|
a1i |
|- ( ( W e. LMod /\ V C_ B ) -> B e. _V ) |
12 |
|
simpr |
|- ( ( W e. LMod /\ V C_ B ) -> V C_ B ) |
13 |
11 12
|
ssexd |
|- ( ( W e. LMod /\ V C_ B ) -> V e. _V ) |
14 |
|
f1oi |
|- ( _I |` V ) : V -1-1-onto-> V |
15 |
|
f1of |
|- ( ( _I |` V ) : V -1-1-onto-> V -> ( _I |` V ) : V --> V ) |
16 |
14 15
|
mp1i |
|- ( ( W e. LMod /\ V C_ B ) -> ( _I |` V ) : V --> V ) |
17 |
16 12
|
fssd |
|- ( ( W e. LMod /\ V C_ B ) -> ( _I |` V ) : V --> B ) |
18 |
|
eqid |
|- ( Base ` ( F freeLMod V ) ) = ( Base ` ( F freeLMod V ) ) |
19 |
1 3 4 5 6 18
|
islindf4 |
|- ( ( W e. LMod /\ V e. _V /\ ( _I |` V ) : V --> B ) -> ( ( _I |` V ) LIndF W <-> A. a e. ( Base ` ( F freeLMod V ) ) ( ( W gsum ( a oF .x. ( _I |` V ) ) ) = O -> a = ( V X. { .0. } ) ) ) ) |
20 |
9 13 17 19
|
syl3anc |
|- ( ( W e. LMod /\ V C_ B ) -> ( ( _I |` V ) LIndF W <-> A. a e. ( Base ` ( F freeLMod V ) ) ( ( W gsum ( a oF .x. ( _I |` V ) ) ) = O -> a = ( V X. { .0. } ) ) ) ) |
21 |
3
|
fvexi |
|- F e. _V |
22 |
|
eqid |
|- ( F freeLMod V ) = ( F freeLMod V ) |
23 |
22 2 6 18
|
frlmelbas |
|- ( ( F e. _V /\ V e. _V ) -> ( a e. ( Base ` ( F freeLMod V ) ) <-> ( a e. ( K ^m V ) /\ a finSupp .0. ) ) ) |
24 |
21 13 23
|
sylancr |
|- ( ( W e. LMod /\ V C_ B ) -> ( a e. ( Base ` ( F freeLMod V ) ) <-> ( a e. ( K ^m V ) /\ a finSupp .0. ) ) ) |
25 |
24
|
imbi1d |
|- ( ( W e. LMod /\ V C_ B ) -> ( ( a e. ( Base ` ( F freeLMod V ) ) -> ( ( W gsum ( a oF .x. ( _I |` V ) ) ) = O -> a = ( V X. { .0. } ) ) ) <-> ( ( a e. ( K ^m V ) /\ a finSupp .0. ) -> ( ( W gsum ( a oF .x. ( _I |` V ) ) ) = O -> a = ( V X. { .0. } ) ) ) ) ) |
26 |
|
elmapfn |
|- ( a e. ( K ^m V ) -> a Fn V ) |
27 |
26
|
ad2antrl |
|- ( ( ( W e. LMod /\ V C_ B ) /\ ( a e. ( K ^m V ) /\ a finSupp .0. ) ) -> a Fn V ) |
28 |
17
|
adantr |
|- ( ( ( W e. LMod /\ V C_ B ) /\ ( a e. ( K ^m V ) /\ a finSupp .0. ) ) -> ( _I |` V ) : V --> B ) |
29 |
28
|
ffnd |
|- ( ( ( W e. LMod /\ V C_ B ) /\ ( a e. ( K ^m V ) /\ a finSupp .0. ) ) -> ( _I |` V ) Fn V ) |
30 |
13
|
adantr |
|- ( ( ( W e. LMod /\ V C_ B ) /\ ( a e. ( K ^m V ) /\ a finSupp .0. ) ) -> V e. _V ) |
31 |
|
inidm |
|- ( V i^i V ) = V |
32 |
|
eqidd |
|- ( ( ( ( W e. LMod /\ V C_ B ) /\ ( a e. ( K ^m V ) /\ a finSupp .0. ) ) /\ v e. V ) -> ( a ` v ) = ( a ` v ) ) |
33 |
|
fvresi |
|- ( v e. V -> ( ( _I |` V ) ` v ) = v ) |
34 |
33
|
adantl |
|- ( ( ( ( W e. LMod /\ V C_ B ) /\ ( a e. ( K ^m V ) /\ a finSupp .0. ) ) /\ v e. V ) -> ( ( _I |` V ) ` v ) = v ) |
35 |
27 29 30 30 31 32 34
|
offval |
|- ( ( ( W e. LMod /\ V C_ B ) /\ ( a e. ( K ^m V ) /\ a finSupp .0. ) ) -> ( a oF .x. ( _I |` V ) ) = ( v e. V |-> ( ( a ` v ) .x. v ) ) ) |
36 |
35
|
oveq2d |
|- ( ( ( W e. LMod /\ V C_ B ) /\ ( a e. ( K ^m V ) /\ a finSupp .0. ) ) -> ( W gsum ( a oF .x. ( _I |` V ) ) ) = ( W gsum ( v e. V |-> ( ( a ` v ) .x. v ) ) ) ) |
37 |
36
|
eqeq1d |
|- ( ( ( W e. LMod /\ V C_ B ) /\ ( a e. ( K ^m V ) /\ a finSupp .0. ) ) -> ( ( W gsum ( a oF .x. ( _I |` V ) ) ) = O <-> ( W gsum ( v e. V |-> ( ( a ` v ) .x. v ) ) ) = O ) ) |
38 |
37
|
imbi1d |
|- ( ( ( W e. LMod /\ V C_ B ) /\ ( a e. ( K ^m V ) /\ a finSupp .0. ) ) -> ( ( ( W gsum ( a oF .x. ( _I |` V ) ) ) = O -> a = ( V X. { .0. } ) ) <-> ( ( W gsum ( v e. V |-> ( ( a ` v ) .x. v ) ) ) = O -> a = ( V X. { .0. } ) ) ) ) |
39 |
38
|
pm5.74da |
|- ( ( W e. LMod /\ V C_ B ) -> ( ( ( a e. ( K ^m V ) /\ a finSupp .0. ) -> ( ( W gsum ( a oF .x. ( _I |` V ) ) ) = O -> a = ( V X. { .0. } ) ) ) <-> ( ( a e. ( K ^m V ) /\ a finSupp .0. ) -> ( ( W gsum ( v e. V |-> ( ( a ` v ) .x. v ) ) ) = O -> a = ( V X. { .0. } ) ) ) ) ) |
40 |
|
impexp |
|- ( ( ( a e. ( K ^m V ) /\ a finSupp .0. ) -> ( ( W gsum ( v e. V |-> ( ( a ` v ) .x. v ) ) ) = O -> a = ( V X. { .0. } ) ) ) <-> ( a e. ( K ^m V ) -> ( a finSupp .0. -> ( ( W gsum ( v e. V |-> ( ( a ` v ) .x. v ) ) ) = O -> a = ( V X. { .0. } ) ) ) ) ) |
41 |
|
impexp |
|- ( ( ( a finSupp .0. /\ ( W gsum ( v e. V |-> ( ( a ` v ) .x. v ) ) ) = O ) -> a = ( V X. { .0. } ) ) <-> ( a finSupp .0. -> ( ( W gsum ( v e. V |-> ( ( a ` v ) .x. v ) ) ) = O -> a = ( V X. { .0. } ) ) ) ) |
42 |
41
|
imbi2i |
|- ( ( a e. ( K ^m V ) -> ( ( a finSupp .0. /\ ( W gsum ( v e. V |-> ( ( a ` v ) .x. v ) ) ) = O ) -> a = ( V X. { .0. } ) ) ) <-> ( a e. ( K ^m V ) -> ( a finSupp .0. -> ( ( W gsum ( v e. V |-> ( ( a ` v ) .x. v ) ) ) = O -> a = ( V X. { .0. } ) ) ) ) ) |
43 |
40 42
|
bitr4i |
|- ( ( ( a e. ( K ^m V ) /\ a finSupp .0. ) -> ( ( W gsum ( v e. V |-> ( ( a ` v ) .x. v ) ) ) = O -> a = ( V X. { .0. } ) ) ) <-> ( a e. ( K ^m V ) -> ( ( a finSupp .0. /\ ( W gsum ( v e. V |-> ( ( a ` v ) .x. v ) ) ) = O ) -> a = ( V X. { .0. } ) ) ) ) |
44 |
43
|
a1i |
|- ( ( W e. LMod /\ V C_ B ) -> ( ( ( a e. ( K ^m V ) /\ a finSupp .0. ) -> ( ( W gsum ( v e. V |-> ( ( a ` v ) .x. v ) ) ) = O -> a = ( V X. { .0. } ) ) ) <-> ( a e. ( K ^m V ) -> ( ( a finSupp .0. /\ ( W gsum ( v e. V |-> ( ( a ` v ) .x. v ) ) ) = O ) -> a = ( V X. { .0. } ) ) ) ) ) |
45 |
25 39 44
|
3bitrd |
|- ( ( W e. LMod /\ V C_ B ) -> ( ( a e. ( Base ` ( F freeLMod V ) ) -> ( ( W gsum ( a oF .x. ( _I |` V ) ) ) = O -> a = ( V X. { .0. } ) ) ) <-> ( a e. ( K ^m V ) -> ( ( a finSupp .0. /\ ( W gsum ( v e. V |-> ( ( a ` v ) .x. v ) ) ) = O ) -> a = ( V X. { .0. } ) ) ) ) ) |
46 |
45
|
ralbidv2 |
|- ( ( W e. LMod /\ V C_ B ) -> ( A. a e. ( Base ` ( F freeLMod V ) ) ( ( W gsum ( a oF .x. ( _I |` V ) ) ) = O -> a = ( V X. { .0. } ) ) <-> A. a e. ( K ^m V ) ( ( a finSupp .0. /\ ( W gsum ( v e. V |-> ( ( a ` v ) .x. v ) ) ) = O ) -> a = ( V X. { .0. } ) ) ) ) |
47 |
8 20 46
|
3bitrd |
|- ( ( W e. LMod /\ V C_ B ) -> ( V e. ( LIndS ` W ) <-> A. a e. ( K ^m V ) ( ( a finSupp .0. /\ ( W gsum ( v e. V |-> ( ( a ` v ) .x. v ) ) ) = O ) -> a = ( V X. { .0. } ) ) ) ) |