Metamath Proof Explorer


Theorem lindflbs

Description: Conditions for an independent family to be a basis. (Contributed by Thierry Arnoux, 21-Jul-2023)

Ref Expression
Hypotheses lindflbs.b
|- B = ( Base ` W )
lindflbs.k
|- K = ( Base ` F )
lindflbs.r
|- S = ( Scalar ` W )
lindflbs.t
|- .x. = ( .s ` W )
lindflbs.z
|- O = ( 0g ` W )
lindflbs.y
|- .0. = ( 0g ` S )
lindflbs.n
|- N = ( LSpan ` W )
lindflbs.1
|- ( ph -> W e. LMod )
lindflbs.2
|- ( ph -> S e. NzRing )
lindflbs.3
|- ( ph -> I e. V )
lindflbs.4
|- ( ph -> F : I -1-1-> B )
Assertion lindflbs
|- ( ph -> ( ran F e. ( LBasis ` W ) <-> ( F LIndF W /\ ( N ` ran F ) = B ) ) )

Proof

Step Hyp Ref Expression
1 lindflbs.b
 |-  B = ( Base ` W )
2 lindflbs.k
 |-  K = ( Base ` F )
3 lindflbs.r
 |-  S = ( Scalar ` W )
4 lindflbs.t
 |-  .x. = ( .s ` W )
5 lindflbs.z
 |-  O = ( 0g ` W )
6 lindflbs.y
 |-  .0. = ( 0g ` S )
7 lindflbs.n
 |-  N = ( LSpan ` W )
8 lindflbs.1
 |-  ( ph -> W e. LMod )
9 lindflbs.2
 |-  ( ph -> S e. NzRing )
10 lindflbs.3
 |-  ( ph -> I e. V )
11 lindflbs.4
 |-  ( ph -> F : I -1-1-> B )
12 eqid
 |-  ( LBasis ` W ) = ( LBasis ` W )
13 1 12 7 islbs4
 |-  ( ran F e. ( LBasis ` W ) <-> ( ran F e. ( LIndS ` W ) /\ ( N ` ran F ) = B ) )
14 ssv
 |-  ran F C_ _V
15 f1ssr
 |-  ( ( F : I -1-1-> B /\ ran F C_ _V ) -> F : I -1-1-> _V )
16 11 14 15 sylancl
 |-  ( ph -> F : I -1-1-> _V )
17 f1dm
 |-  ( F : I -1-1-> B -> dom F = I )
18 f1eq2
 |-  ( dom F = I -> ( F : dom F -1-1-> _V <-> F : I -1-1-> _V ) )
19 11 17 18 3syl
 |-  ( ph -> ( F : dom F -1-1-> _V <-> F : I -1-1-> _V ) )
20 16 19 mpbird
 |-  ( ph -> F : dom F -1-1-> _V )
21 3 islindf3
 |-  ( ( W e. LMod /\ S e. NzRing ) -> ( F LIndF W <-> ( F : dom F -1-1-> _V /\ ran F e. ( LIndS ` W ) ) ) )
22 8 9 21 syl2anc
 |-  ( ph -> ( F LIndF W <-> ( F : dom F -1-1-> _V /\ ran F e. ( LIndS ` W ) ) ) )
23 20 22 mpbirand
 |-  ( ph -> ( F LIndF W <-> ran F e. ( LIndS ` W ) ) )
24 23 anbi1d
 |-  ( ph -> ( ( F LIndF W /\ ( N ` ran F ) = B ) <-> ( ran F e. ( LIndS ` W ) /\ ( N ` ran F ) = B ) ) )
25 13 24 bitr4id
 |-  ( ph -> ( ran F e. ( LBasis ` W ) <-> ( F LIndF W /\ ( N ` ran F ) = B ) ) )