Step |
Hyp |
Ref |
Expression |
1 |
|
lindflbs.b |
|- B = ( Base ` W ) |
2 |
|
lindflbs.k |
|- K = ( Base ` F ) |
3 |
|
lindflbs.r |
|- S = ( Scalar ` W ) |
4 |
|
lindflbs.t |
|- .x. = ( .s ` W ) |
5 |
|
lindflbs.z |
|- O = ( 0g ` W ) |
6 |
|
lindflbs.y |
|- .0. = ( 0g ` S ) |
7 |
|
lindflbs.n |
|- N = ( LSpan ` W ) |
8 |
|
lindflbs.1 |
|- ( ph -> W e. LMod ) |
9 |
|
lindflbs.2 |
|- ( ph -> S e. NzRing ) |
10 |
|
lindflbs.3 |
|- ( ph -> I e. V ) |
11 |
|
lindflbs.4 |
|- ( ph -> F : I -1-1-> B ) |
12 |
|
eqid |
|- ( LBasis ` W ) = ( LBasis ` W ) |
13 |
1 12 7
|
islbs4 |
|- ( ran F e. ( LBasis ` W ) <-> ( ran F e. ( LIndS ` W ) /\ ( N ` ran F ) = B ) ) |
14 |
|
ssv |
|- ran F C_ _V |
15 |
|
f1ssr |
|- ( ( F : I -1-1-> B /\ ran F C_ _V ) -> F : I -1-1-> _V ) |
16 |
11 14 15
|
sylancl |
|- ( ph -> F : I -1-1-> _V ) |
17 |
|
f1dm |
|- ( F : I -1-1-> B -> dom F = I ) |
18 |
|
f1eq2 |
|- ( dom F = I -> ( F : dom F -1-1-> _V <-> F : I -1-1-> _V ) ) |
19 |
11 17 18
|
3syl |
|- ( ph -> ( F : dom F -1-1-> _V <-> F : I -1-1-> _V ) ) |
20 |
16 19
|
mpbird |
|- ( ph -> F : dom F -1-1-> _V ) |
21 |
3
|
islindf3 |
|- ( ( W e. LMod /\ S e. NzRing ) -> ( F LIndF W <-> ( F : dom F -1-1-> _V /\ ran F e. ( LIndS ` W ) ) ) ) |
22 |
8 9 21
|
syl2anc |
|- ( ph -> ( F LIndF W <-> ( F : dom F -1-1-> _V /\ ran F e. ( LIndS ` W ) ) ) ) |
23 |
20 22
|
mpbirand |
|- ( ph -> ( F LIndF W <-> ran F e. ( LIndS ` W ) ) ) |
24 |
23
|
anbi1d |
|- ( ph -> ( ( F LIndF W /\ ( N ` ran F ) = B ) <-> ( ran F e. ( LIndS ` W ) /\ ( N ` ran F ) = B ) ) ) |
25 |
13 24
|
bitr4id |
|- ( ph -> ( ran F e. ( LBasis ` W ) <-> ( F LIndF W /\ ( N ` ran F ) = B ) ) ) |