Metamath Proof Explorer


Theorem lindflbs

Description: Conditions for an independent family to be a basis. (Contributed by Thierry Arnoux, 21-Jul-2023)

Ref Expression
Hypotheses lindflbs.b B = Base W
lindflbs.k K = Base F
lindflbs.r S = Scalar W
lindflbs.t · ˙ = W
lindflbs.z O = 0 W
lindflbs.y 0 ˙ = 0 S
lindflbs.n N = LSpan W
lindflbs.1 φ W LMod
lindflbs.2 φ S NzRing
lindflbs.3 φ I V
lindflbs.4 φ F : I 1-1 B
Assertion lindflbs φ ran F LBasis W F LIndF W N ran F = B

Proof

Step Hyp Ref Expression
1 lindflbs.b B = Base W
2 lindflbs.k K = Base F
3 lindflbs.r S = Scalar W
4 lindflbs.t · ˙ = W
5 lindflbs.z O = 0 W
6 lindflbs.y 0 ˙ = 0 S
7 lindflbs.n N = LSpan W
8 lindflbs.1 φ W LMod
9 lindflbs.2 φ S NzRing
10 lindflbs.3 φ I V
11 lindflbs.4 φ F : I 1-1 B
12 eqid LBasis W = LBasis W
13 1 12 7 islbs4 ran F LBasis W ran F LIndS W N ran F = B
14 ssv ran F V
15 f1ssr F : I 1-1 B ran F V F : I 1-1 V
16 11 14 15 sylancl φ F : I 1-1 V
17 f1dm F : I 1-1 B dom F = I
18 f1eq2 dom F = I F : dom F 1-1 V F : I 1-1 V
19 11 17 18 3syl φ F : dom F 1-1 V F : I 1-1 V
20 16 19 mpbird φ F : dom F 1-1 V
21 3 islindf3 W LMod S NzRing F LIndF W F : dom F 1-1 V ran F LIndS W
22 8 9 21 syl2anc φ F LIndF W F : dom F 1-1 V ran F LIndS W
23 20 22 mpbirand φ F LIndF W ran F LIndS W
24 23 anbi1d φ F LIndF W N ran F = B ran F LIndS W N ran F = B
25 13 24 bitr4id φ ran F LBasis W F LIndF W N ran F = B