| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							f1fn | 
							 |-  ( F : A -1-1-> B -> F Fn A )  | 
						
						
							| 2 | 
							
								1
							 | 
							adantr | 
							 |-  ( ( F : A -1-1-> B /\ ran F C_ C ) -> F Fn A )  | 
						
						
							| 3 | 
							
								
							 | 
							simpr | 
							 |-  ( ( F : A -1-1-> B /\ ran F C_ C ) -> ran F C_ C )  | 
						
						
							| 4 | 
							
								
							 | 
							df-f | 
							 |-  ( F : A --> C <-> ( F Fn A /\ ran F C_ C ) )  | 
						
						
							| 5 | 
							
								2 3 4
							 | 
							sylanbrc | 
							 |-  ( ( F : A -1-1-> B /\ ran F C_ C ) -> F : A --> C )  | 
						
						
							| 6 | 
							
								
							 | 
							df-f1 | 
							 |-  ( F : A -1-1-> B <-> ( F : A --> B /\ Fun `' F ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							simprbi | 
							 |-  ( F : A -1-1-> B -> Fun `' F )  | 
						
						
							| 8 | 
							
								7
							 | 
							adantr | 
							 |-  ( ( F : A -1-1-> B /\ ran F C_ C ) -> Fun `' F )  | 
						
						
							| 9 | 
							
								
							 | 
							df-f1 | 
							 |-  ( F : A -1-1-> C <-> ( F : A --> C /\ Fun `' F ) )  | 
						
						
							| 10 | 
							
								5 8 9
							 | 
							sylanbrc | 
							 |-  ( ( F : A -1-1-> B /\ ran F C_ C ) -> F : A -1-1-> C )  |