| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							f1fn | 
							⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵  →  𝐹  Fn  𝐴 )  | 
						
						
							| 2 | 
							
								1
							 | 
							adantr | 
							⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵  ∧  ran  𝐹  ⊆  𝐶 )  →  𝐹  Fn  𝐴 )  | 
						
						
							| 3 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵  ∧  ran  𝐹  ⊆  𝐶 )  →  ran  𝐹  ⊆  𝐶 )  | 
						
						
							| 4 | 
							
								
							 | 
							df-f | 
							⊢ ( 𝐹 : 𝐴 ⟶ 𝐶  ↔  ( 𝐹  Fn  𝐴  ∧  ran  𝐹  ⊆  𝐶 ) )  | 
						
						
							| 5 | 
							
								2 3 4
							 | 
							sylanbrc | 
							⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵  ∧  ran  𝐹  ⊆  𝐶 )  →  𝐹 : 𝐴 ⟶ 𝐶 )  | 
						
						
							| 6 | 
							
								
							 | 
							df-f1 | 
							⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵  ↔  ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  Fun  ◡ 𝐹 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							simprbi | 
							⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵  →  Fun  ◡ 𝐹 )  | 
						
						
							| 8 | 
							
								7
							 | 
							adantr | 
							⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵  ∧  ran  𝐹  ⊆  𝐶 )  →  Fun  ◡ 𝐹 )  | 
						
						
							| 9 | 
							
								
							 | 
							df-f1 | 
							⊢ ( 𝐹 : 𝐴 –1-1→ 𝐶  ↔  ( 𝐹 : 𝐴 ⟶ 𝐶  ∧  Fun  ◡ 𝐹 ) )  | 
						
						
							| 10 | 
							
								5 8 9
							 | 
							sylanbrc | 
							⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵  ∧  ran  𝐹  ⊆  𝐶 )  →  𝐹 : 𝐴 –1-1→ 𝐶 )  |