| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lindssn.1 |
|- B = ( Base ` W ) |
| 2 |
|
lindssn.2 |
|- .0. = ( 0g ` W ) |
| 3 |
|
simp1 |
|- ( ( W e. LVec /\ X e. B /\ X =/= .0. ) -> W e. LVec ) |
| 4 |
|
snssi |
|- ( X e. B -> { X } C_ B ) |
| 5 |
4
|
3ad2ant2 |
|- ( ( W e. LVec /\ X e. B /\ X =/= .0. ) -> { X } C_ B ) |
| 6 |
|
simpr |
|- ( ( ( W e. LVec /\ X e. B /\ X =/= .0. ) /\ y e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) ) -> y e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) ) |
| 7 |
|
eldifsni |
|- ( y e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) -> y =/= ( 0g ` ( Scalar ` W ) ) ) |
| 8 |
6 7
|
syl |
|- ( ( ( W e. LVec /\ X e. B /\ X =/= .0. ) /\ y e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) ) -> y =/= ( 0g ` ( Scalar ` W ) ) ) |
| 9 |
8
|
neneqd |
|- ( ( ( W e. LVec /\ X e. B /\ X =/= .0. ) /\ y e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) ) -> -. y = ( 0g ` ( Scalar ` W ) ) ) |
| 10 |
|
simpl3 |
|- ( ( ( W e. LVec /\ X e. B /\ X =/= .0. ) /\ y e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) ) -> X =/= .0. ) |
| 11 |
10
|
neneqd |
|- ( ( ( W e. LVec /\ X e. B /\ X =/= .0. ) /\ y e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) ) -> -. X = .0. ) |
| 12 |
|
ioran |
|- ( -. ( y = ( 0g ` ( Scalar ` W ) ) \/ X = .0. ) <-> ( -. y = ( 0g ` ( Scalar ` W ) ) /\ -. X = .0. ) ) |
| 13 |
9 11 12
|
sylanbrc |
|- ( ( ( W e. LVec /\ X e. B /\ X =/= .0. ) /\ y e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) ) -> -. ( y = ( 0g ` ( Scalar ` W ) ) \/ X = .0. ) ) |
| 14 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
| 15 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
| 16 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
| 17 |
|
eqid |
|- ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) |
| 18 |
3
|
adantr |
|- ( ( ( W e. LVec /\ X e. B /\ X =/= .0. ) /\ y e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) ) -> W e. LVec ) |
| 19 |
6
|
eldifad |
|- ( ( ( W e. LVec /\ X e. B /\ X =/= .0. ) /\ y e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) ) -> y e. ( Base ` ( Scalar ` W ) ) ) |
| 20 |
|
simpl2 |
|- ( ( ( W e. LVec /\ X e. B /\ X =/= .0. ) /\ y e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) ) -> X e. B ) |
| 21 |
1 14 15 16 17 2 18 19 20
|
lvecvs0or |
|- ( ( ( W e. LVec /\ X e. B /\ X =/= .0. ) /\ y e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) ) -> ( ( y ( .s ` W ) X ) = .0. <-> ( y = ( 0g ` ( Scalar ` W ) ) \/ X = .0. ) ) ) |
| 22 |
21
|
necon3abid |
|- ( ( ( W e. LVec /\ X e. B /\ X =/= .0. ) /\ y e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) ) -> ( ( y ( .s ` W ) X ) =/= .0. <-> -. ( y = ( 0g ` ( Scalar ` W ) ) \/ X = .0. ) ) ) |
| 23 |
13 22
|
mpbird |
|- ( ( ( W e. LVec /\ X e. B /\ X =/= .0. ) /\ y e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) ) -> ( y ( .s ` W ) X ) =/= .0. ) |
| 24 |
|
nelsn |
|- ( ( y ( .s ` W ) X ) =/= .0. -> -. ( y ( .s ` W ) X ) e. { .0. } ) |
| 25 |
23 24
|
syl |
|- ( ( ( W e. LVec /\ X e. B /\ X =/= .0. ) /\ y e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) ) -> -. ( y ( .s ` W ) X ) e. { .0. } ) |
| 26 |
|
difid |
|- ( { X } \ { X } ) = (/) |
| 27 |
26
|
a1i |
|- ( ( ( W e. LVec /\ X e. B /\ X =/= .0. ) /\ y e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) ) -> ( { X } \ { X } ) = (/) ) |
| 28 |
27
|
fveq2d |
|- ( ( ( W e. LVec /\ X e. B /\ X =/= .0. ) /\ y e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) ) -> ( ( LSpan ` W ) ` ( { X } \ { X } ) ) = ( ( LSpan ` W ) ` (/) ) ) |
| 29 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
| 30 |
|
eqid |
|- ( LSpan ` W ) = ( LSpan ` W ) |
| 31 |
2 30
|
lsp0 |
|- ( W e. LMod -> ( ( LSpan ` W ) ` (/) ) = { .0. } ) |
| 32 |
3 29 31
|
3syl |
|- ( ( W e. LVec /\ X e. B /\ X =/= .0. ) -> ( ( LSpan ` W ) ` (/) ) = { .0. } ) |
| 33 |
32
|
adantr |
|- ( ( ( W e. LVec /\ X e. B /\ X =/= .0. ) /\ y e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) ) -> ( ( LSpan ` W ) ` (/) ) = { .0. } ) |
| 34 |
28 33
|
eqtrd |
|- ( ( ( W e. LVec /\ X e. B /\ X =/= .0. ) /\ y e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) ) -> ( ( LSpan ` W ) ` ( { X } \ { X } ) ) = { .0. } ) |
| 35 |
25 34
|
neleqtrrd |
|- ( ( ( W e. LVec /\ X e. B /\ X =/= .0. ) /\ y e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) ) -> -. ( y ( .s ` W ) X ) e. ( ( LSpan ` W ) ` ( { X } \ { X } ) ) ) |
| 36 |
35
|
ralrimiva |
|- ( ( W e. LVec /\ X e. B /\ X =/= .0. ) -> A. y e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) -. ( y ( .s ` W ) X ) e. ( ( LSpan ` W ) ` ( { X } \ { X } ) ) ) |
| 37 |
|
oveq2 |
|- ( x = X -> ( y ( .s ` W ) x ) = ( y ( .s ` W ) X ) ) |
| 38 |
|
sneq |
|- ( x = X -> { x } = { X } ) |
| 39 |
38
|
difeq2d |
|- ( x = X -> ( { X } \ { x } ) = ( { X } \ { X } ) ) |
| 40 |
39
|
fveq2d |
|- ( x = X -> ( ( LSpan ` W ) ` ( { X } \ { x } ) ) = ( ( LSpan ` W ) ` ( { X } \ { X } ) ) ) |
| 41 |
37 40
|
eleq12d |
|- ( x = X -> ( ( y ( .s ` W ) x ) e. ( ( LSpan ` W ) ` ( { X } \ { x } ) ) <-> ( y ( .s ` W ) X ) e. ( ( LSpan ` W ) ` ( { X } \ { X } ) ) ) ) |
| 42 |
41
|
notbid |
|- ( x = X -> ( -. ( y ( .s ` W ) x ) e. ( ( LSpan ` W ) ` ( { X } \ { x } ) ) <-> -. ( y ( .s ` W ) X ) e. ( ( LSpan ` W ) ` ( { X } \ { X } ) ) ) ) |
| 43 |
42
|
ralbidv |
|- ( x = X -> ( A. y e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) -. ( y ( .s ` W ) x ) e. ( ( LSpan ` W ) ` ( { X } \ { x } ) ) <-> A. y e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) -. ( y ( .s ` W ) X ) e. ( ( LSpan ` W ) ` ( { X } \ { X } ) ) ) ) |
| 44 |
43
|
ralsng |
|- ( X e. B -> ( A. x e. { X } A. y e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) -. ( y ( .s ` W ) x ) e. ( ( LSpan ` W ) ` ( { X } \ { x } ) ) <-> A. y e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) -. ( y ( .s ` W ) X ) e. ( ( LSpan ` W ) ` ( { X } \ { X } ) ) ) ) |
| 45 |
44
|
3ad2ant2 |
|- ( ( W e. LVec /\ X e. B /\ X =/= .0. ) -> ( A. x e. { X } A. y e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) -. ( y ( .s ` W ) x ) e. ( ( LSpan ` W ) ` ( { X } \ { x } ) ) <-> A. y e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) -. ( y ( .s ` W ) X ) e. ( ( LSpan ` W ) ` ( { X } \ { X } ) ) ) ) |
| 46 |
36 45
|
mpbird |
|- ( ( W e. LVec /\ X e. B /\ X =/= .0. ) -> A. x e. { X } A. y e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) -. ( y ( .s ` W ) x ) e. ( ( LSpan ` W ) ` ( { X } \ { x } ) ) ) |
| 47 |
1 14 30 15 16 17
|
islinds2 |
|- ( W e. LVec -> ( { X } e. ( LIndS ` W ) <-> ( { X } C_ B /\ A. x e. { X } A. y e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) -. ( y ( .s ` W ) x ) e. ( ( LSpan ` W ) ` ( { X } \ { x } ) ) ) ) ) |
| 48 |
47
|
biimpar |
|- ( ( W e. LVec /\ ( { X } C_ B /\ A. x e. { X } A. y e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) -. ( y ( .s ` W ) x ) e. ( ( LSpan ` W ) ` ( { X } \ { x } ) ) ) ) -> { X } e. ( LIndS ` W ) ) |
| 49 |
3 5 46 48
|
syl12anc |
|- ( ( W e. LVec /\ X e. B /\ X =/= .0. ) -> { X } e. ( LIndS ` W ) ) |