Metamath Proof Explorer


Theorem sra1r

Description: The multiplicative neutral element of a subring algebra. (Contributed by Thierry Arnoux, 24-Jul-2023)

Ref Expression
Hypotheses sral1r.a ( 𝜑𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) )
sral1r.1 ( 𝜑1 = ( 1r𝑊 ) )
sral1r.s ( 𝜑𝑆 ⊆ ( Base ‘ 𝑊 ) )
Assertion sra1r ( 𝜑1 = ( 1r𝐴 ) )

Proof

Step Hyp Ref Expression
1 sral1r.a ( 𝜑𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) )
2 sral1r.1 ( 𝜑1 = ( 1r𝑊 ) )
3 sral1r.s ( 𝜑𝑆 ⊆ ( Base ‘ 𝑊 ) )
4 eqidd ( 𝜑 → ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) )
5 1 3 srabase ( 𝜑 → ( Base ‘ 𝑊 ) = ( Base ‘ 𝐴 ) )
6 1 3 sramulr ( 𝜑 → ( .r𝑊 ) = ( .r𝐴 ) )
7 6 oveqdr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( .r𝑊 ) 𝑦 ) = ( 𝑥 ( .r𝐴 ) 𝑦 ) )
8 4 5 7 rngidpropd ( 𝜑 → ( 1r𝑊 ) = ( 1r𝐴 ) )
9 2 8 eqtrd ( 𝜑1 = ( 1r𝐴 ) )