Description: The multiplicative neutral element of a subring algebra. (Contributed by Thierry Arnoux, 24-Jul-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sral1r.a | ⊢ ( 𝜑 → 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) ) | |
sral1r.1 | ⊢ ( 𝜑 → 1 = ( 1r ‘ 𝑊 ) ) | ||
sral1r.s | ⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) | ||
Assertion | sra1r | ⊢ ( 𝜑 → 1 = ( 1r ‘ 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sral1r.a | ⊢ ( 𝜑 → 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) ) | |
2 | sral1r.1 | ⊢ ( 𝜑 → 1 = ( 1r ‘ 𝑊 ) ) | |
3 | sral1r.s | ⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) | |
4 | eqidd | ⊢ ( 𝜑 → ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) ) | |
5 | 1 3 | srabase | ⊢ ( 𝜑 → ( Base ‘ 𝑊 ) = ( Base ‘ 𝐴 ) ) |
6 | 1 3 | sramulr | ⊢ ( 𝜑 → ( .r ‘ 𝑊 ) = ( .r ‘ 𝐴 ) ) |
7 | 6 | oveqdr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) ) |
8 | 4 5 7 | rngidpropd | ⊢ ( 𝜑 → ( 1r ‘ 𝑊 ) = ( 1r ‘ 𝐴 ) ) |
9 | 2 8 | eqtrd | ⊢ ( 𝜑 → 1 = ( 1r ‘ 𝐴 ) ) |