Description: The unity element of a subring algebra. (Contributed by Thierry Arnoux, 24-Jul-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sral1r.a | ⊢ ( 𝜑 → 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) ) | |
| sral1r.1 | ⊢ ( 𝜑 → 1 = ( 1r ‘ 𝑊 ) ) | ||
| sral1r.s | ⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) | ||
| Assertion | sra1r | ⊢ ( 𝜑 → 1 = ( 1r ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sral1r.a | ⊢ ( 𝜑 → 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) ) | |
| 2 | sral1r.1 | ⊢ ( 𝜑 → 1 = ( 1r ‘ 𝑊 ) ) | |
| 3 | sral1r.s | ⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) | |
| 4 | eqidd | ⊢ ( 𝜑 → ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) ) | |
| 5 | 1 3 | srabase | ⊢ ( 𝜑 → ( Base ‘ 𝑊 ) = ( Base ‘ 𝐴 ) ) |
| 6 | 1 3 | sramulr | ⊢ ( 𝜑 → ( .r ‘ 𝑊 ) = ( .r ‘ 𝐴 ) ) |
| 7 | 6 | oveqdr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) ) |
| 8 | 4 5 7 | rngidpropd | ⊢ ( 𝜑 → ( 1r ‘ 𝑊 ) = ( 1r ‘ 𝐴 ) ) |
| 9 | 2 8 | eqtrd | ⊢ ( 𝜑 → 1 = ( 1r ‘ 𝐴 ) ) |