Step |
Hyp |
Ref |
Expression |
1 |
|
sraring.1 |
⊢ 𝐴 = ( ( subringAlg ‘ 𝑅 ) ‘ 𝑉 ) |
2 |
|
sraring.2 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
3 |
2
|
a1i |
⊢ ( 𝑉 ⊆ 𝐵 → 𝐵 = ( Base ‘ 𝑅 ) ) |
4 |
1
|
a1i |
⊢ ( 𝑉 ⊆ 𝐵 → 𝐴 = ( ( subringAlg ‘ 𝑅 ) ‘ 𝑉 ) ) |
5 |
|
id |
⊢ ( 𝑉 ⊆ 𝐵 → 𝑉 ⊆ 𝐵 ) |
6 |
5 2
|
sseqtrdi |
⊢ ( 𝑉 ⊆ 𝐵 → 𝑉 ⊆ ( Base ‘ 𝑅 ) ) |
7 |
4 6
|
srabase |
⊢ ( 𝑉 ⊆ 𝐵 → ( Base ‘ 𝑅 ) = ( Base ‘ 𝐴 ) ) |
8 |
2 7
|
syl5eq |
⊢ ( 𝑉 ⊆ 𝐵 → 𝐵 = ( Base ‘ 𝐴 ) ) |
9 |
4 6
|
sraaddg |
⊢ ( 𝑉 ⊆ 𝐵 → ( +g ‘ 𝑅 ) = ( +g ‘ 𝐴 ) ) |
10 |
9
|
oveqdr |
⊢ ( ( 𝑉 ⊆ 𝐵 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐴 ) 𝑦 ) ) |
11 |
4 6
|
sramulr |
⊢ ( 𝑉 ⊆ 𝐵 → ( .r ‘ 𝑅 ) = ( .r ‘ 𝐴 ) ) |
12 |
11
|
oveqdr |
⊢ ( ( 𝑉 ⊆ 𝐵 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) ) |
13 |
3 8 10 12
|
ringpropd |
⊢ ( 𝑉 ⊆ 𝐵 → ( 𝑅 ∈ Ring ↔ 𝐴 ∈ Ring ) ) |
14 |
13
|
biimpac |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑉 ⊆ 𝐵 ) → 𝐴 ∈ Ring ) |