| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sraring.1 |
|- A = ( ( subringAlg ` R ) ` V ) |
| 2 |
|
sraring.2 |
|- B = ( Base ` R ) |
| 3 |
2
|
a1i |
|- ( V C_ B -> B = ( Base ` R ) ) |
| 4 |
1
|
a1i |
|- ( V C_ B -> A = ( ( subringAlg ` R ) ` V ) ) |
| 5 |
|
id |
|- ( V C_ B -> V C_ B ) |
| 6 |
5 2
|
sseqtrdi |
|- ( V C_ B -> V C_ ( Base ` R ) ) |
| 7 |
4 6
|
srabase |
|- ( V C_ B -> ( Base ` R ) = ( Base ` A ) ) |
| 8 |
2 7
|
eqtrid |
|- ( V C_ B -> B = ( Base ` A ) ) |
| 9 |
4 6
|
sraaddg |
|- ( V C_ B -> ( +g ` R ) = ( +g ` A ) ) |
| 10 |
9
|
oveqdr |
|- ( ( V C_ B /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` R ) y ) = ( x ( +g ` A ) y ) ) |
| 11 |
4 6
|
sramulr |
|- ( V C_ B -> ( .r ` R ) = ( .r ` A ) ) |
| 12 |
11
|
oveqdr |
|- ( ( V C_ B /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` R ) y ) = ( x ( .r ` A ) y ) ) |
| 13 |
3 8 10 12
|
ringpropd |
|- ( V C_ B -> ( R e. Ring <-> A e. Ring ) ) |
| 14 |
13
|
biimpac |
|- ( ( R e. Ring /\ V C_ B ) -> A e. Ring ) |