Step |
Hyp |
Ref |
Expression |
1 |
|
sraring.1 |
|- A = ( ( subringAlg ` R ) ` V ) |
2 |
|
sraring.2 |
|- B = ( Base ` R ) |
3 |
2
|
a1i |
|- ( V C_ B -> B = ( Base ` R ) ) |
4 |
1
|
a1i |
|- ( V C_ B -> A = ( ( subringAlg ` R ) ` V ) ) |
5 |
|
id |
|- ( V C_ B -> V C_ B ) |
6 |
5 2
|
sseqtrdi |
|- ( V C_ B -> V C_ ( Base ` R ) ) |
7 |
4 6
|
srabase |
|- ( V C_ B -> ( Base ` R ) = ( Base ` A ) ) |
8 |
2 7
|
syl5eq |
|- ( V C_ B -> B = ( Base ` A ) ) |
9 |
4 6
|
sraaddg |
|- ( V C_ B -> ( +g ` R ) = ( +g ` A ) ) |
10 |
9
|
oveqdr |
|- ( ( V C_ B /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` R ) y ) = ( x ( +g ` A ) y ) ) |
11 |
4 6
|
sramulr |
|- ( V C_ B -> ( .r ` R ) = ( .r ` A ) ) |
12 |
11
|
oveqdr |
|- ( ( V C_ B /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` R ) y ) = ( x ( .r ` A ) y ) ) |
13 |
3 8 10 12
|
ringpropd |
|- ( V C_ B -> ( R e. Ring <-> A e. Ring ) ) |
14 |
13
|
biimpac |
|- ( ( R e. Ring /\ V C_ B ) -> A e. Ring ) |