Step |
Hyp |
Ref |
Expression |
1 |
|
sraring.1 |
⊢ 𝐴 = ( ( subringAlg ‘ 𝑅 ) ‘ 𝑉 ) |
2 |
|
sraring.2 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
3 |
|
drngring |
⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring ) |
4 |
1 2
|
sraring |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑉 ⊆ 𝐵 ) → 𝐴 ∈ Ring ) |
5 |
3 4
|
sylan |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵 ) → 𝐴 ∈ Ring ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
7 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
8 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
9 |
6 7 8
|
isdrng |
⊢ ( 𝑅 ∈ DivRing ↔ ( 𝑅 ∈ Ring ∧ ( Unit ‘ 𝑅 ) = ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ) |
10 |
9
|
simprbi |
⊢ ( 𝑅 ∈ DivRing → ( Unit ‘ 𝑅 ) = ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) |
11 |
10
|
adantr |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵 ) → ( Unit ‘ 𝑅 ) = ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) |
12 |
|
eqidd |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵 ) → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) ) |
13 |
1
|
a1i |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵 ) → 𝐴 = ( ( subringAlg ‘ 𝑅 ) ‘ 𝑉 ) ) |
14 |
|
simpr |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵 ) → 𝑉 ⊆ 𝐵 ) |
15 |
14 2
|
sseqtrdi |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵 ) → 𝑉 ⊆ ( Base ‘ 𝑅 ) ) |
16 |
13 15
|
srabase |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵 ) → ( Base ‘ 𝑅 ) = ( Base ‘ 𝐴 ) ) |
17 |
13 15
|
sramulr |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵 ) → ( .r ‘ 𝑅 ) = ( .r ‘ 𝐴 ) ) |
18 |
17
|
oveqdr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) ) |
19 |
12 16 18
|
unitpropd |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵 ) → ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝐴 ) ) |
20 |
|
eqidd |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵 ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) |
21 |
13 20 15
|
sralmod0 |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵 ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝐴 ) ) |
22 |
21
|
sneqd |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵 ) → { ( 0g ‘ 𝑅 ) } = { ( 0g ‘ 𝐴 ) } ) |
23 |
16 22
|
difeq12d |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵 ) → ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) = ( ( Base ‘ 𝐴 ) ∖ { ( 0g ‘ 𝐴 ) } ) ) |
24 |
11 19 23
|
3eqtr3d |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵 ) → ( Unit ‘ 𝐴 ) = ( ( Base ‘ 𝐴 ) ∖ { ( 0g ‘ 𝐴 ) } ) ) |
25 |
|
eqid |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) |
26 |
|
eqid |
⊢ ( Unit ‘ 𝐴 ) = ( Unit ‘ 𝐴 ) |
27 |
|
eqid |
⊢ ( 0g ‘ 𝐴 ) = ( 0g ‘ 𝐴 ) |
28 |
25 26 27
|
isdrng |
⊢ ( 𝐴 ∈ DivRing ↔ ( 𝐴 ∈ Ring ∧ ( Unit ‘ 𝐴 ) = ( ( Base ‘ 𝐴 ) ∖ { ( 0g ‘ 𝐴 ) } ) ) ) |
29 |
5 24 28
|
sylanbrc |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑉 ⊆ 𝐵 ) → 𝐴 ∈ DivRing ) |