Step |
Hyp |
Ref |
Expression |
1 |
|
sraring.1 |
|- A = ( ( subringAlg ` R ) ` V ) |
2 |
|
sraring.2 |
|- B = ( Base ` R ) |
3 |
|
drngring |
|- ( R e. DivRing -> R e. Ring ) |
4 |
1 2
|
sraring |
|- ( ( R e. Ring /\ V C_ B ) -> A e. Ring ) |
5 |
3 4
|
sylan |
|- ( ( R e. DivRing /\ V C_ B ) -> A e. Ring ) |
6 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
7 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
8 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
9 |
6 7 8
|
isdrng |
|- ( R e. DivRing <-> ( R e. Ring /\ ( Unit ` R ) = ( ( Base ` R ) \ { ( 0g ` R ) } ) ) ) |
10 |
9
|
simprbi |
|- ( R e. DivRing -> ( Unit ` R ) = ( ( Base ` R ) \ { ( 0g ` R ) } ) ) |
11 |
10
|
adantr |
|- ( ( R e. DivRing /\ V C_ B ) -> ( Unit ` R ) = ( ( Base ` R ) \ { ( 0g ` R ) } ) ) |
12 |
|
eqidd |
|- ( ( R e. DivRing /\ V C_ B ) -> ( Base ` R ) = ( Base ` R ) ) |
13 |
1
|
a1i |
|- ( ( R e. DivRing /\ V C_ B ) -> A = ( ( subringAlg ` R ) ` V ) ) |
14 |
|
simpr |
|- ( ( R e. DivRing /\ V C_ B ) -> V C_ B ) |
15 |
14 2
|
sseqtrdi |
|- ( ( R e. DivRing /\ V C_ B ) -> V C_ ( Base ` R ) ) |
16 |
13 15
|
srabase |
|- ( ( R e. DivRing /\ V C_ B ) -> ( Base ` R ) = ( Base ` A ) ) |
17 |
13 15
|
sramulr |
|- ( ( R e. DivRing /\ V C_ B ) -> ( .r ` R ) = ( .r ` A ) ) |
18 |
17
|
oveqdr |
|- ( ( ( R e. DivRing /\ V C_ B ) /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( x ( .r ` R ) y ) = ( x ( .r ` A ) y ) ) |
19 |
12 16 18
|
unitpropd |
|- ( ( R e. DivRing /\ V C_ B ) -> ( Unit ` R ) = ( Unit ` A ) ) |
20 |
|
eqidd |
|- ( ( R e. DivRing /\ V C_ B ) -> ( 0g ` R ) = ( 0g ` R ) ) |
21 |
13 20 15
|
sralmod0 |
|- ( ( R e. DivRing /\ V C_ B ) -> ( 0g ` R ) = ( 0g ` A ) ) |
22 |
21
|
sneqd |
|- ( ( R e. DivRing /\ V C_ B ) -> { ( 0g ` R ) } = { ( 0g ` A ) } ) |
23 |
16 22
|
difeq12d |
|- ( ( R e. DivRing /\ V C_ B ) -> ( ( Base ` R ) \ { ( 0g ` R ) } ) = ( ( Base ` A ) \ { ( 0g ` A ) } ) ) |
24 |
11 19 23
|
3eqtr3d |
|- ( ( R e. DivRing /\ V C_ B ) -> ( Unit ` A ) = ( ( Base ` A ) \ { ( 0g ` A ) } ) ) |
25 |
|
eqid |
|- ( Base ` A ) = ( Base ` A ) |
26 |
|
eqid |
|- ( Unit ` A ) = ( Unit ` A ) |
27 |
|
eqid |
|- ( 0g ` A ) = ( 0g ` A ) |
28 |
25 26 27
|
isdrng |
|- ( A e. DivRing <-> ( A e. Ring /\ ( Unit ` A ) = ( ( Base ` A ) \ { ( 0g ` A ) } ) ) ) |
29 |
5 24 28
|
sylanbrc |
|- ( ( R e. DivRing /\ V C_ B ) -> A e. DivRing ) |