Metamath Proof Explorer


Theorem srasubrg

Description: A subring of the original structure is also a subring of the constructed subring algebra. (Contributed by Thierry Arnoux, 24-Jul-2023)

Ref Expression
Hypotheses srasubrg.a
|- ( ph -> A = ( ( subringAlg ` W ) ` S ) )
srasubrg.u
|- ( ph -> U e. ( SubRing ` W ) )
srasubrg.s
|- ( ph -> S C_ ( Base ` W ) )
Assertion srasubrg
|- ( ph -> U e. ( SubRing ` A ) )

Proof

Step Hyp Ref Expression
1 srasubrg.a
 |-  ( ph -> A = ( ( subringAlg ` W ) ` S ) )
2 srasubrg.u
 |-  ( ph -> U e. ( SubRing ` W ) )
3 srasubrg.s
 |-  ( ph -> S C_ ( Base ` W ) )
4 eqidd
 |-  ( ph -> ( Base ` W ) = ( Base ` W ) )
5 1 3 srabase
 |-  ( ph -> ( Base ` W ) = ( Base ` A ) )
6 1 3 sraaddg
 |-  ( ph -> ( +g ` W ) = ( +g ` A ) )
7 6 oveqdr
 |-  ( ( ph /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> ( x ( +g ` W ) y ) = ( x ( +g ` A ) y ) )
8 1 3 sramulr
 |-  ( ph -> ( .r ` W ) = ( .r ` A ) )
9 8 oveqdr
 |-  ( ( ph /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> ( x ( .r ` W ) y ) = ( x ( .r ` A ) y ) )
10 4 5 7 9 subrgpropd
 |-  ( ph -> ( SubRing ` W ) = ( SubRing ` A ) )
11 2 10 eleqtrd
 |-  ( ph -> U e. ( SubRing ` A ) )