Step |
Hyp |
Ref |
Expression |
1 |
|
srasubrg.a |
|- ( ph -> A = ( ( subringAlg ` W ) ` S ) ) |
2 |
|
srasubrg.u |
|- ( ph -> U e. ( SubRing ` W ) ) |
3 |
|
srasubrg.s |
|- ( ph -> S C_ ( Base ` W ) ) |
4 |
|
eqidd |
|- ( ph -> ( Base ` W ) = ( Base ` W ) ) |
5 |
1 3
|
srabase |
|- ( ph -> ( Base ` W ) = ( Base ` A ) ) |
6 |
1 3
|
sraaddg |
|- ( ph -> ( +g ` W ) = ( +g ` A ) ) |
7 |
6
|
oveqdr |
|- ( ( ph /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> ( x ( +g ` W ) y ) = ( x ( +g ` A ) y ) ) |
8 |
1 3
|
sramulr |
|- ( ph -> ( .r ` W ) = ( .r ` A ) ) |
9 |
8
|
oveqdr |
|- ( ( ph /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> ( x ( .r ` W ) y ) = ( x ( .r ` A ) y ) ) |
10 |
4 5 7 9
|
subrgpropd |
|- ( ph -> ( SubRing ` W ) = ( SubRing ` A ) ) |
11 |
2 10
|
eleqtrd |
|- ( ph -> U e. ( SubRing ` A ) ) |