Metamath Proof Explorer


Theorem srasubrg

Description: A subring of the original structure is also a subring of the constructed subring algebra. (Contributed by Thierry Arnoux, 24-Jul-2023)

Ref Expression
Hypotheses srasubrg.a φ A = subringAlg W S
srasubrg.u φ U SubRing W
srasubrg.s φ S Base W
Assertion srasubrg φ U SubRing A

Proof

Step Hyp Ref Expression
1 srasubrg.a φ A = subringAlg W S
2 srasubrg.u φ U SubRing W
3 srasubrg.s φ S Base W
4 eqidd φ Base W = Base W
5 1 3 srabase φ Base W = Base A
6 1 3 sraaddg φ + W = + A
7 6 oveqdr φ x Base W y Base W x + W y = x + A y
8 1 3 sramulr φ W = A
9 8 oveqdr φ x Base W y Base W x W y = x A y
10 4 5 7 9 subrgpropd φ SubRing W = SubRing A
11 2 10 eleqtrd φ U SubRing A